nuclide/platform/base_glsl.pk3dir/glsl/fullbright_reflect.glsl

63 lines
1.7 KiB
GLSL

!!ver 110
!!samps diffuse reflectcube normalmap
#include "sys/defs.h"
varying vec2 tex_c;
varying vec3 eyevector;
varying mat3 invsurface;
#ifdef VERTEX_SHADER
void main ()
{
tex_c = v_texcoord;
gl_Position = ftetransform();
invsurface[0] = v_svector;
invsurface[1] = v_tvector;
invsurface[2] = v_normal;
vec3 eyeminusvertex = e_eyepos - v_position.xyz;
eyevector.x = dot( eyeminusvertex, v_svector.xyz );
eyevector.y = dot( eyeminusvertex, v_tvector.xyz );
eyevector.z = dot( eyeminusvertex, v_normal.xyz );
}
#endif
#ifdef FRAGMENT_SHADER
void main ( void )
{
vec4 diffuse_f = texture2D(s_diffuse, tex_c);
if (diffuse_f.rgb == vec3(0,0,1)) {
diffuse_f.rgb = vec3(0,0,0);
discard;
}
#ifdef BUMP
#ifndef FLATTENNORM
vec3 normal_f = normalize(texture2D(s_normalmap, tex_c).rgb - 0.5);
#else
// For very flat surfaces and gentle surface distortions, the 8-bit precision per channel in the normalmap
// can be insufficient. This is a hack to instead have very wobbly normalmaps that make use of the 8 bits
// and then scale the wobblyness back once in the floating-point domain.
vec3 normal_f = texture2D(s_normalmap, tex_c).rgb - 0.5;
normal_f.x *= 0.0625;
normal_f.y *= 0.0625;
normal_f = normalize(normal_f);
#endif
#else
vec3 normal_f = vec3(0, 0, 1);
#endif
vec3 cube_c;
vec4 out_f = vec4( 1.0, 1.0, 1.0, 1.0 );
cube_c = reflect( normalize(-eyevector), normal_f);
cube_c = cube_c.x * invsurface[0] + cube_c.y * invsurface[1] + cube_c.z * invsurface[2];
cube_c = ( m_model * vec4(cube_c.xyz, 0.0)).xyz;
out_f.rgb = mix( textureCube(s_reflectcube, cube_c ).rgb, diffuse_f.rgb, diffuse_f.a);
diffuse_f = out_f * e_colourident;
gl_FragColor = diffuse_f;
}
#endif