nuclide/src/shared/math.qc

147 lines
3.3 KiB
Plaintext

/*
* Copyright (c) 2016-2022 Vera Visions LLC.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* lerping function that accounts for negative degrees */
float
Math_LerpAngle(float fStart, float fEnd, float fAmount)
{
float shortest_angle = ((((fEnd - fStart) % 360.0f) + 540.0f) % 360.0f) - 180.0f;
return shortest_angle * fAmount;
}
/* linear lerp function */
float
Math_Lerp(float fA, float fB, float fPercent)
{
return (fA * (1 - fPercent)) + (fB * fPercent);
}
/* tries to make sure an angle value stays within certain constraints...
* however it doesn't account for much larger discrepancies */
float
Math_FixDelta(float fDelta)
{
if (fDelta >= 180) {
fDelta -= 360;
} else if (fDelta <= -180) {
fDelta += 360;
}
return fDelta;
}
vector
Math_FixDeltaVector(vector in)
{
in[0] = Math_FixDelta(in[0]);
in[1] = Math_FixDelta(in[1]);
in[2] = Math_FixDelta(in[2]);
return in;
}
/* takes an impact angle and a plane normal, returns a new trajectory */
vector
Math_Reflect(vector v1, vector v2)
{
return v1 - 2 * dotproduct(v1, v2) * v2;
}
/* returns a random vector, if the first paramete is true it'll make
* sure that vertical velocity is ALWAYS positive */
vector
Math_RandomVector(float fFlyUp)
{
vector tmp;
tmp[0] = random() - 0.5f;
tmp[1] = random() - 0.5f;
if ( fFlyUp == TRUE ) {
tmp[2] = random();
} else {
tmp[2] = random() - 0.5f;
}
return tmp * 2.0f;
}
/* takes a position and a pivot point and rotates point by X degrees around the pivot (YAW) */
vector
Math_RotateAroundPivot(vector pos, vector pivot, float degr)
{
vector new = pos;
new[0] = pivot[0] + (pos[0] - pivot[0]) * cos(degr) - (pos[1] - pivot[1]) * sin(degr);
new[1] = pivot[1] + (pos[0] - pivot[0]) * sin(degr) + (pos[1] - pivot[1]) * cos(degr);
return new;
}
vector hsv2rgb(float h, float s, float v)
{
float i,f,p,q,t;
vector col = [0,0,0];
h = max(0.0, min(360.0, h));
s = max(0.0, min(100.0, s));
v = max(0.0, min(100.0, v));
s /= 100;
v /= 100;
if (s == 0) {
col[0] = col[1] = col[2] = rint(v*255);
return col;
}
h /= 60;
i = floor(h);
f = h - i;
p = v * (1 - s);
q = v * (1 - s * f);
t = v * (1 - s * (1 - f));
switch (i) {
case 0:
col[0] = rint(255*v);
col[1] = rint(255*t);
col[2] = rint(255*p);
break;
case 1:
col[0] = rint(255*q);
col[1] = rint(255*v);
col[2] = rint(255*p);
break;
case 2:
col[0] = rint(255*p);
col[1] = rint(255*v);
col[2] = rint(255*t);
break;
case 3:
col[0] = rint(255*p);
col[1] = rint(255*q);
col[2] = rint(255*v);
break;
case 4:
col[0] = rint(255*t);
col[1] = rint(255*p);
col[2] = rint(255*v);
break;
default:
col[0] = rint(255*v);
col[1] = rint(255*p);
col[2] = rint(255*q);
}
return col;
}