worldspawn/tools/vmap/surface.c

3503 lines
87 KiB
C

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define SURFACE_C
/* dependencies */
#include "vmap.h"
/*
AllocDrawSurface()
ydnar: gs mods: changed to force an explicit type when allocating
*/
mapDrawSurface_t *AllocDrawSurface( surfaceType_t type ){
mapDrawSurface_t *ds;
/* ydnar: gs mods: only allocate valid types */
if ( type <= SURFACE_BAD || type >= NUM_SURFACE_TYPES ) {
Error( "AllocDrawSurface: Invalid surface type %d specified", type );
}
/* bounds check */
if ( numMapDrawSurfs >= MAX_MAP_DRAW_SURFS ) {
Error( "MAX_MAP_DRAW_SURFS (%d) exceeded", MAX_MAP_DRAW_SURFS );
}
ds = &mapDrawSurfs[ numMapDrawSurfs ];
numMapDrawSurfs++;
/* ydnar: do initial surface setup */
memset( ds, 0, sizeof( mapDrawSurface_t ) );
ds->type = type;
ds->planeNum = -1;
ds->cubemapNum = -1;
ds->fogNum = defaultFogNum; /* ydnar 2003-02-12 */
ds->outputNum = -1; /* ydnar 2002-08-13 */
ds->surfaceNum = numMapDrawSurfs - 1; /* ydnar 2003-02-16 */
return ds;
}
/*
FinishSurface()
ydnar: general surface finish pass
*/
void FinishSurface( mapDrawSurface_t *ds ){
mapDrawSurface_t *ds2;
/* dummy check */
if ( ds->type <= SURFACE_BAD || ds->type >= NUM_SURFACE_TYPES || ds == NULL || ds->shaderInfo == NULL ) {
return;
}
/* ydnar: rocking tek-fu celshading */
if ( ds->celShader != NULL ) {
MakeCelSurface( ds, ds->celShader );
}
/* backsides stop here */
if ( ds->backSide ) {
return;
}
/* ydnar: rocking surface cloning (fur baby yeah!) */
if ( ds->shaderInfo->cloneShader != NULL && ds->shaderInfo->cloneShader[ 0 ] != '\0' ) {
CloneSurface( ds, ShaderInfoForShader( ds->shaderInfo->cloneShader, 0 ) );
}
/* ydnar: q3map_backShader support */
if ( ds->shaderInfo->backShader != NULL && ds->shaderInfo->backShader[ 0 ] != '\0' ) {
ds2 = CloneSurface( ds, ShaderInfoForShader( ds->shaderInfo->backShader, 0 ) );
ds2->backSide = qtrue;
}
}
/*
CloneSurface()
clones a map drawsurface, using the specified shader
*/
mapDrawSurface_t *CloneSurface( mapDrawSurface_t *src, shaderInfo_t *si ){
mapDrawSurface_t *ds;
/* dummy check */
if ( src == NULL || si == NULL ) {
return NULL;
}
/* allocate a new surface */
ds = AllocDrawSurface( src->type );
if ( ds == NULL ) {
return NULL;
}
/* copy it */
memcpy( ds, src, sizeof( *ds ) );
/* destroy side reference */
ds->sideRef = NULL;
/* set shader */
ds->shaderInfo = si;
/* copy verts */
if ( ds->numVerts > 0 ) {
ds->verts = safe_malloc( ds->numVerts * sizeof( *ds->verts ) );
memcpy( ds->verts, src->verts, ds->numVerts * sizeof( *ds->verts ) );
}
/* copy indexes */
if ( ds->numIndexes <= 0 ) {
return ds;
}
ds->indexes = safe_malloc( ds->numIndexes * sizeof( *ds->indexes ) );
memcpy( ds->indexes, src->indexes, ds->numIndexes * sizeof( *ds->indexes ) );
/* return the surface */
return ds;
}
/*
MakeCelSurface() - ydnar
makes a copy of a surface, but specific to cel shading
*/
mapDrawSurface_t *MakeCelSurface( mapDrawSurface_t *src, shaderInfo_t *si ){
mapDrawSurface_t *ds;
/* dummy check */
if ( src == NULL || si == NULL ) {
return NULL;
}
/* don't create cel surfaces for certain types of shaders */
if ( ( src->shaderInfo->compileFlags & C_TRANSLUCENT ) ||
( src->shaderInfo->compileFlags & C_SKY ) ) {
return NULL;
}
/* make a copy */
ds = CloneSurface( src, si );
if ( ds == NULL ) {
return NULL;
}
/* do some fixups for celshading */
ds->planar = qfalse;
ds->planeNum = -1;
ds->celShader = NULL; /* don't cel shade cels :P */
/* return the surface */
return ds;
}
/*
MakeSkyboxSurface() - ydnar
generates a skybox surface, viewable from everywhere there is sky
*/
mapDrawSurface_t *MakeSkyboxSurface( mapDrawSurface_t *src ){
int i;
mapDrawSurface_t *ds;
/* dummy check */
if ( src == NULL ) {
return NULL;
}
/* make a copy */
ds = CloneSurface( src, src->shaderInfo );
if ( ds == NULL ) {
return NULL;
}
/* set parent */
ds->parent = src;
/* scale the surface vertexes */
for ( i = 0; i < ds->numVerts; i++ )
{
m4x4_transform_point( skyboxTransform, ds->verts[ i ].xyz );
/* debug code */
//% bspDrawVerts[ bspDrawSurfaces[ ds->outputNum ].firstVert + i ].color[ 0 ][ 1 ] = 0;
//% bspDrawVerts[ bspDrawSurfaces[ ds->outputNum ].firstVert + i ].color[ 0 ][ 2 ] = 0;
}
/* so backface culling creep doesn't bork the surface */
VectorClear( ds->lightmapVecs[ 2 ] );
/* return the surface */
return ds;
}
/*
IsTriangleDegenerate
returns qtrue if all three points are colinear, backwards, or the triangle is just plain bogus
*/
#define TINY_AREA 1.0f
qboolean IsTriangleDegenerate( bspDrawVert_t *points, int a, int b, int c ){
vec3_t v1, v2, v3;
float d;
/* calcuate the area of the triangle */
VectorSubtract( points[ b ].xyz, points[ a ].xyz, v1 );
VectorSubtract( points[ c ].xyz, points[ a ].xyz, v2 );
CrossProduct( v1, v2, v3 );
d = VectorLength( v3 );
/* assume all very small or backwards triangles will cause problems */
if ( d < TINY_AREA ) {
return qtrue;
}
/* must be a good triangle */
return qfalse;
}
/*
ClearSurface() - ydnar
clears a surface and frees any allocated memory
*/
void ClearSurface( mapDrawSurface_t *ds ){
ds->type = SURFACE_BAD;
ds->planar = qfalse;
ds->planeNum = -1;
ds->numVerts = 0;
if ( ds->verts != NULL ) {
free( ds->verts );
}
ds->verts = NULL;
ds->numIndexes = 0;
if ( ds->indexes != NULL ) {
free( ds->indexes );
}
ds->indexes = NULL;
numClearedSurfaces++;
}
/*
TidyEntitySurfaces() - ydnar
deletes all empty or bad surfaces from the surface list
*/
void TidyEntitySurfaces( entity_t *e ){
int i, j, deleted;
mapDrawSurface_t *out, *in = NULL;
/* note it */
Sys_FPrintf( SYS_VRB, "--- TidyEntitySurfaces ---\n" );
/* walk the surface list */
deleted = 0;
for ( i = e->firstDrawSurf, j = e->firstDrawSurf; j < numMapDrawSurfs; i++, j++ )
{
/* get out surface */
out = &mapDrawSurfs[ i ];
/* walk the surface list again until a proper surface is found */
for ( ; j < numMapDrawSurfs; j++ )
{
/* get in surface */
in = &mapDrawSurfs[ j ];
/* this surface ok? */
if ( in->type == SURFACE_FLARE || in->type == SURFACE_SHADER ||
( in->type != SURFACE_BAD && in->numVerts > 0 ) ) {
break;
}
/* nuke it */
ClearSurface( in );
deleted++;
}
/* copy if necessary */
if ( i != j ) {
memcpy( out, in, sizeof( mapDrawSurface_t ) );
}
}
/* set the new number of drawsurfs */
numMapDrawSurfs = i;
/* emit some stats */
Sys_FPrintf( SYS_VRB, "%9d empty or malformed surfaces deleted\n", deleted );
}
/*
CalcSurfaceTextureRange() - ydnar
calculates the clamped texture range for a given surface, returns qtrue if it's within [-texRange,texRange]
*/
qboolean CalcSurfaceTextureRange( mapDrawSurface_t *ds ){
int i, j, v, size[ 2 ];
float mins[ 2 ], maxs[ 2 ];
/* try to early out */
if ( ds->numVerts <= 0 ) {
return qtrue;
}
/* walk the verts and determine min/max st values */
mins[ 0 ] = 999999;
mins[ 1 ] = 999999;
maxs[ 0 ] = -999999;
maxs[ 1 ] = -999999;
for ( i = 0; i < ds->numVerts; i++ )
{
for ( j = 0; j < 2; j++ )
{
if ( ds->verts[ i ].st[ j ] < mins[ j ] ) {
mins[ j ] = ds->verts[ i ].st[ j ];
}
if ( ds->verts[ i ].st[ j ] > maxs[ j ] ) {
maxs[ j ] = ds->verts[ i ].st[ j ];
}
}
}
/* clamp to integer range and calculate surface bias values */
for ( j = 0; j < 2; j++ )
ds->bias[ j ] = -floor( 0.5f * ( mins[ j ] + maxs[ j ] ) );
/* find biased texture coordinate mins/maxs */
size[ 0 ] = ds->shaderInfo->shaderWidth;
size[ 1 ] = ds->shaderInfo->shaderHeight;
ds->texMins[ 0 ] = 999999;
ds->texMins[ 1 ] = 999999;
ds->texMaxs[ 0 ] = -999999;
ds->texMaxs[ 1 ] = -999999;
for ( i = 0; i < ds->numVerts; i++ )
{
for ( j = 0; j < 2; j++ )
{
v = ( (float) ds->verts[ i ].st[ j ] + ds->bias[ j ] ) * size[ j ];
if ( v < ds->texMins[ j ] ) {
ds->texMins[ j ] = v;
}
if ( v > ds->texMaxs[ j ] ) {
ds->texMaxs[ j ] = v;
}
}
}
/* calc ranges */
for ( j = 0; j < 2; j++ )
ds->texRange[ j ] = ( ds->texMaxs[ j ] - ds->texMins[ j ] );
/* if range is zero, then assume unlimited precision */
if ( texRange == 0 ) {
return qtrue;
}
/* within range? */
for ( j = 0; j < 2; j++ )
{
if ( ds->texMins[ j ] < -texRange || ds->texMaxs[ j ] > texRange ) {
return qfalse;
}
}
/* within range */
return qtrue;
}
/*
CalcLightmapAxis() - ydnar
gives closed lightmap axis for a plane normal
*/
qboolean CalcLightmapAxis( vec3_t normal, vec3_t axis ){
vec3_t absolute;
/* test */
if ( normal[ 0 ] == 0.0f && normal[ 1 ] == 0.0f && normal[ 2 ] == 0.0f ) {
VectorClear( axis );
return qfalse;
}
/* get absolute normal */
absolute[ 0 ] = fabs( normal[ 0 ] );
absolute[ 1 ] = fabs( normal[ 1 ] );
absolute[ 2 ] = fabs( normal[ 2 ] );
/* test and set */
if ( absolute[ 2 ] > absolute[ 0 ] - 0.0001f && absolute[ 2 ] > absolute[ 1 ] - 0.0001f ) {
if ( normal[ 2 ] > 0.0f ) {
VectorSet( axis, 0.0f, 0.0f, 1.0f );
}
else{
VectorSet( axis, 0.0f, 0.0f, -1.0f );
}
}
else if ( absolute[ 0 ] > absolute[ 1 ] - 0.0001f && absolute[ 0 ] > absolute[ 2 ] - 0.0001f ) {
if ( normal[ 0 ] > 0.0f ) {
VectorSet( axis, 1.0f, 0.0f, 0.0f );
}
else{
VectorSet( axis, -1.0f, 0.0f, 0.0f );
}
}
else
{
if ( normal[ 1 ] > 0.0f ) {
VectorSet( axis, 0.0f, 1.0f, 0.0f );
}
else{
VectorSet( axis, 0.0f, -1.0f, 0.0f );
}
}
/* return ok */
return qtrue;
}
/*
ClassifySurfaces() - ydnar
fills out a bunch of info in the surfaces, including planar status, lightmap projection, and bounding box
*/
#define PLANAR_EPSILON 0.5f //% 0.126f 0.25f
void ClassifySurfaces( int numSurfs, mapDrawSurface_t *ds ){
int i, bestAxis;
float dist;
vec4_t plane;
shaderInfo_t *si;
static vec3_t axii[ 6 ] =
{
{ 0, 0, -1 },
{ 0, 0, 1 },
{ -1, 0, 0 },
{ 1, 0, 0 },
{ 0, -1, 0 },
{ 0, 1, 0 }
};
/* walk the list of surfaces */
for ( ; numSurfs > 0; numSurfs--, ds++ )
{
/* ignore bogus surfaces */
if ( ds->type == SURFACE_BAD || ds->numVerts <= 0 ) {
continue;
}
/* get shader */
si = ds->shaderInfo;
/* -----------------------------------------------------------------
force meta if vertex count is too high or shader requires it
----------------------------------------------------------------- */
if ( ds->type != SURFACE_PATCH && ds->type != SURFACE_FACE ) {
if ( ds->numVerts > SHADER_MAX_VERTEXES ) {
ds->type = SURFACE_FORCED_META;
}
}
/* -----------------------------------------------------------------
plane and bounding box classification
----------------------------------------------------------------- */
/* set surface bounding box */
ClearBounds( ds->mins, ds->maxs );
for ( i = 0; i < ds->numVerts; i++ )
AddPointToBounds( ds->verts[ i ].xyz, ds->mins, ds->maxs );
/* try to get an existing plane */
if ( ds->planeNum >= 0 ) {
VectorCopy( mapplanes[ ds->planeNum ].normal, plane );
plane[ 3 ] = mapplanes[ ds->planeNum ].dist;
}
/* construct one from the first vert with a valid normal */
else
{
VectorClear( plane );
plane[ 3 ] = 0.0f;
for ( i = 0; i < ds->numVerts; i++ )
{
if ( ds->verts[ i ].normal[ 0 ] != 0.0f && ds->verts[ i ].normal[ 1 ] != 0.0f && ds->verts[ i ].normal[ 2 ] != 0.0f ) {
VectorCopy( ds->verts[ i ].normal, plane );
plane[ 3 ] = DotProduct( ds->verts[ i ].xyz, plane );
break;
}
}
}
/* test for bogus plane */
if ( VectorLength( plane ) <= 0.0f ) {
ds->planar = qfalse;
ds->planeNum = -1;
}
else
{
/* determine if surface is planar */
ds->planar = qtrue;
/* test each vert */
for ( i = 0; i < ds->numVerts; i++ )
{
/* point-plane test */
dist = DotProduct( ds->verts[ i ].xyz, plane ) - plane[ 3 ];
if ( fabs( dist ) > PLANAR_EPSILON ) {
//% if( ds->planeNum >= 0 )
//% {
//% Sys_FPrintf( SYS_WRN, "WARNING: Planar surface marked unplanar (%f > %f)\n", fabs( dist ), PLANAR_EPSILON );
//% ds->verts[ i ].color[ 0 ][ 0 ] = ds->verts[ i ].color[ 0 ][ 2 ] = 0;
//% }
ds->planar = qfalse;
break;
}
}
}
/* find map plane if necessary */
if ( ds->planar ) {
if ( ds->planeNum < 0 ) {
ds->planeNum = FindFloatPlane( plane, plane[ 3 ], 1, &ds->verts[ 0 ].xyz );
}
VectorCopy( plane, ds->lightmapVecs[ 2 ] );
}
else
{
ds->planeNum = -1;
VectorClear( ds->lightmapVecs[ 2 ] );
//% if( ds->type == SURF_META || ds->type == SURF_FACE )
//% Sys_FPrintf( SYS_WRN, "WARNING: Non-planar face (%d): %s\n", ds->planeNum, ds->shaderInfo->shader );
}
/* -----------------------------------------------------------------
lightmap bounds and axis projection
----------------------------------------------------------------- */
/* vertex lit surfaces don't need this information */
if ( si->compileFlags & C_VERTEXLIT || ds->type == SURFACE_TRIANGLES ) {
VectorClear( ds->lightmapAxis );
//% VectorClear( ds->lightmapVecs[ 2 ] );
ds->sampleSize = 0;
continue;
}
/* the shader can specify an explicit lightmap axis */
if ( si->lightmapAxis[ 0 ] || si->lightmapAxis[ 1 ] || si->lightmapAxis[ 2 ] ) {
VectorCopy( si->lightmapAxis, ds->lightmapAxis );
}
else if ( ds->type == SURFACE_FORCED_META ) {
VectorClear( ds->lightmapAxis );
}
else if ( ds->planar ) {
CalcLightmapAxis( plane, ds->lightmapAxis );
}
else
{
/* find best lightmap axis */
for ( bestAxis = 0; bestAxis < 6; bestAxis++ )
{
for ( i = 0; i < ds->numVerts && bestAxis < 6; i++ )
{
//% Sys_Printf( "Comparing %1.3f %1.3f %1.3f to %1.3f %1.3f %1.3f\n",
//% ds->verts[ i ].normal[ 0 ], ds->verts[ i ].normal[ 1 ], ds->verts[ i ].normal[ 2 ],
//% axii[ bestAxis ][ 0 ], axii[ bestAxis ][ 1 ], axii[ bestAxis ][ 2 ] );
if ( DotProduct( ds->verts[ i ].normal, axii[ bestAxis ] ) < 0.25f ) { /* fixme: adjust this tolerance to taste */
break;
}
}
if ( i == ds->numVerts ) {
break;
}
}
/* set axis if possible */
if ( bestAxis < 6 ) {
//% if( ds->type == SURFACE_PATCH )
//% Sys_Printf( "Mapped axis %d onto patch\n", bestAxis );
VectorCopy( axii[ bestAxis ], ds->lightmapAxis );
}
/* debug code */
//% if( ds->type == SURFACE_PATCH )
//% Sys_Printf( "Failed to map axis %d onto patch\n", bestAxis );
}
/* calculate lightmap sample size */
if ( ds->shaderInfo->lightmapSampleSize > 0 ) { /* shader value overrides every other */
ds->sampleSize = ds->shaderInfo->lightmapSampleSize;
}
else if ( ds->sampleSize <= 0 ) { /* may contain the entity asigned value */
ds->sampleSize = sampleSize; /* otherwise use global default */
}
if ( ds->lightmapScale > 0.0f ) { /* apply surface lightmap scaling factor */
ds->sampleSize = ds->lightmapScale * (float)ds->sampleSize;
ds->lightmapScale = 0; /* applied */
}
if ( ds->sampleSize < minSampleSize ) {
ds->sampleSize = minSampleSize;
}
if ( ds->sampleSize < 1 ) {
ds->sampleSize = 1;
}
if ( ds->sampleSize > 16384 ) { /* powers of 2 are preferred */
ds->sampleSize = 16384;
}
}
}
/*
ClassifyEntitySurfaces() - ydnar
classifies all surfaces in an entity
*/
void ClassifyEntitySurfaces( entity_t *e ){
int i;
/* note it */
Sys_FPrintf( SYS_VRB, "--- ClassifyEntitySurfaces ---\n" );
/* walk the surface list */
for ( i = e->firstDrawSurf; i < numMapDrawSurfs; i++ )
{
FinishSurface( &mapDrawSurfs[ i ] );
ClassifySurfaces( 1, &mapDrawSurfs[ i ] );
}
/* tidy things up */
TidyEntitySurfaces( e );
}
#define snprintf_ignore(s, n, format, ...) do { \
size_t __n = snprintf(s, n, format, __VA_ARGS__); \
if (n >= n) {} /* truncated, ignore */ \
} while (0)
/*
DrawSurfaceForSide()
creates a SURF_FACE drawsurface from a given brush side and winding
*/
#define SNAP_FLOAT_TO_INT 8
#define SNAP_INT_TO_FLOAT ( 1.0 / SNAP_FLOAT_TO_INT )
mapDrawSurface_t *DrawSurfaceForSide( entity_t *e, brush_t *b, side_t *s, winding_t *w ){
int i, j, k;
mapDrawSurface_t *ds;
shaderInfo_t *si, *parent;
bspDrawVert_t *dv;
vec3_t texX, texY;
vec_t x, y;
vec3_t vTranslated;
byte shaderIndexes[ 256 ];
float offsets[ 256 ];
char tempShader[ MAX_QPATH ];
/* ydnar: don't make a drawsurf for culled sides */
if ( s->culled ) {
return NULL;
}
/* range check */
if ( w->numpoints > MAX_POINTS_ON_WINDING ) {
Error( "DrawSurfaceForSide: w->numpoints = %d (> %d)", w->numpoints, MAX_POINTS_ON_WINDING );
}
/* get shader */
si = s->shaderInfo;
/* ydnar: sky hack/fix for GL_CLAMP borders on ati cards */
if ( skyFixHack && si->skyParmsImageBase[ 0 ] != '\0' ) {
//% Sys_FPrintf( SYS_VRB, "Enabling sky hack for shader %s using env %s\n", si->shader, si->skyParmsImageBase );
snprintf_ignore( tempShader, sizeof tempShader, "%s_lf", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
snprintf_ignore( tempShader, sizeof tempShader, "%s_rt", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
snprintf_ignore( tempShader, sizeof tempShader, "%s_ft", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
snprintf_ignore( tempShader, sizeof tempShader, "%s_bk", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
snprintf_ignore( tempShader, sizeof tempShader, "%s_up", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
snprintf_ignore( tempShader, sizeof tempShader, "%s_dn", si->skyParmsImageBase );
DrawSurfaceForShader( tempShader );
}
/* ydnar: gs mods */
ds = AllocDrawSurface( SURFACE_FACE );
ds->entityNum = b->entityNum;
ds->castShadows = b->castShadows;
ds->recvShadows = b->recvShadows;
ds->planar = qtrue;
ds->planeNum = s->planenum;
VectorCopy( mapplanes[ s->planenum ].normal, ds->lightmapVecs[ 2 ] );
ds->shaderInfo = si;
ds->mapBrush = b;
ds->sideRef = AllocSideRef( s, NULL );
ds->fogNum = -1;
ds->cubemapNum = -1;
ds->sampleSize = b->lightmapSampleSize;
ds->lightmapScale = b->lightmapScale;
ds->numVerts = w->numpoints;
ds->verts = safe_malloc( ds->numVerts * sizeof( *ds->verts ) );
memset( ds->verts, 0, ds->numVerts * sizeof( *ds->verts ) );
/* compute s/t coordinates from brush primitive texture matrix (compute axis base) */
ComputeAxisBase( mapplanes[ s->planenum ].normal, texX, texY );
/* create the vertexes */
for ( j = 0; j < w->numpoints; j++ )
{
/* get the drawvert */
dv = ds->verts + j;
/* copy xyz and do potential z offset */
VectorCopy( w->p[ j ], dv->xyz );
/* round the xyz to a given precision and translate by origin */
for ( i = 0; i < 3; i++ )
dv->xyz[ i ] = SNAP_INT_TO_FLOAT * floor( dv->xyz[ i ] * SNAP_FLOAT_TO_INT + 0.5f );
VectorAdd( dv->xyz, e->origin, vTranslated );
/* ydnar: tek-fu celshading support for flat shaded shit */
if ( flat ) {
dv->st[ 0 ] = si->stFlat[ 0 ];
dv->st[ 1 ] = si->stFlat[ 1 ];
}
/* ydnar: gs mods: added support for explicit shader texcoord generation */
else if ( si->tcGen ) {
dv->st[ 0 ] = DotProduct( si->vecs[ 0 ], vTranslated );
dv->st[ 1 ] = DotProduct( si->vecs[ 1 ], vTranslated );
}
/* old quake-style texturing */
else if ( g_bBrushPrimit == BPRIMIT_OLDBRUSHES ) {
/* nearest-axial projection */
dv->st[ 0 ] = s->vecs[ 0 ][ 3 ] + DotProduct( s->vecs[ 0 ], vTranslated );
dv->st[ 1 ] = s->vecs[ 1 ][ 3 ] + DotProduct( s->vecs[ 1 ], vTranslated );
dv->st[ 0 ] /= si->shaderWidth;
dv->st[ 1 ] /= si->shaderHeight;
}
/* brush primitive texturing */
else
{
/* calculate texture s/t from brush primitive texture matrix */
x = DotProduct( vTranslated, texX );
y = DotProduct( vTranslated, texY );
dv->st[ 0 ] = s->texMat[ 0 ][ 0 ] * x + s->texMat[ 0 ][ 1 ] * y + s->texMat[ 0 ][ 2 ];
dv->st[ 1 ] = s->texMat[ 1 ][ 0 ] * x + s->texMat[ 1 ][ 1 ] * y + s->texMat[ 1 ][ 2 ];
}
/* copy normal */
VectorCopy( mapplanes[ s->planenum ].normal, dv->normal );
/* ydnar: set color */
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
{
dv->color[ k ][ 0 ] = 255;
dv->color[ k ][ 1 ] = 255;
dv->color[ k ][ 2 ] = 255;
dv->color[ k ][ 3 ] = 255;
}
}
/* set cel shader */
ds->celShader = b->celShader;
/* set shade angle */
if ( b->shadeAngleDegrees > 0.0f ) {
ds->shadeAngleDegrees = b->shadeAngleDegrees;
}
/* ydnar: gs mods: moved st biasing elsewhere */
return ds;
}
/*
DrawSurfaceForMesh()
moved here from patch.c
*/
#define YDNAR_NORMAL_EPSILON 0.50f
qboolean VectorCompareExt( vec3_t n1, vec3_t n2, float epsilon ){
int i;
/* test */
for ( i = 0; i < 3; i++ )
if ( fabs( n1[ i ] - n2[ i ] ) > epsilon ) {
return qfalse;
}
return qtrue;
}
mapDrawSurface_t *DrawSurfaceForMesh( entity_t *e, parseMesh_t *p, mesh_t *mesh ){
int i, k, numVerts;
vec4_t plane;
qboolean planar;
float dist;
mapDrawSurface_t *ds;
shaderInfo_t *si, *parent;
bspDrawVert_t *dv;
vec3_t vTranslated;
mesh_t *copy;
byte shaderIndexes[ MAX_EXPANDED_AXIS * MAX_EXPANDED_AXIS ];
float offsets[ MAX_EXPANDED_AXIS * MAX_EXPANDED_AXIS ];
/* get mesh and shader shader */
if ( mesh == NULL ) {
mesh = &p->mesh;
}
si = p->shaderInfo;
if ( mesh == NULL || si == NULL ) {
return NULL;
}
/* get vertex count */
numVerts = mesh->width * mesh->height;
/* to make valid normals for patches with degenerate edges,
we need to make a copy of the mesh and put the aproximating
points onto the curve */
/* create a copy of the mesh */
copy = CopyMesh( mesh );
/* store off the original (potentially bad) normals */
MakeMeshNormals( *copy );
for ( i = 0; i < numVerts; i++ )
VectorCopy( copy->verts[ i ].normal, mesh->verts[ i ].normal );
/* put the mesh on the curve */
PutMeshOnCurve( *copy );
/* find new normals (to take into account degenerate/flipped edges */
MakeMeshNormals( *copy );
for ( i = 0; i < numVerts; i++ )
{
/* ydnar: only copy normals that are significantly different from the originals */
if ( DotProduct( copy->verts[ i ].normal, mesh->verts[ i ].normal ) < 0.75f ) {
VectorCopy( copy->verts[ i ].normal, mesh->verts[ i ].normal );
}
}
/* free the old mesh */
FreeMesh( copy );
/* ydnar: gs mods */
ds = AllocDrawSurface( SURFACE_PATCH );
ds->entityNum = p->entityNum;
ds->castShadows = p->castShadows;
ds->recvShadows = p->recvShadows;
ds->shaderInfo = si;
ds->mapMesh = p;
ds->sampleSize = p->lightmapSampleSize;
ds->lightmapScale = p->lightmapScale; /* ydnar */
ds->patchWidth = mesh->width;
ds->patchHeight = mesh->height;
ds->subdiv_x = mesh->subdiv_x;
ds->subdiv_y = mesh->subdiv_y;
ds->numVerts = ds->patchWidth * ds->patchHeight;
ds->verts = safe_malloc( ds->numVerts * sizeof( *ds->verts ) );
memcpy( ds->verts, mesh->verts, ds->numVerts * sizeof( *ds->verts ) );
ds->fogNum = -1;
ds->cubemapNum = -1;
ds->planeNum = -1;
ds->longestCurve = p->longestCurve;
ds->maxIterations = p->maxIterations;
/* construct a plane from the first vert */
VectorCopy( mesh->verts[ 0 ].normal, plane );
plane[ 3 ] = DotProduct( mesh->verts[ 0 ].xyz, plane );
planar = qtrue;
/* spew forth errors */
if ( VectorLength( plane ) < 0.001f ) {
Sys_Printf( "DrawSurfaceForMesh: bogus plane\n" );
}
/* test each vert */
for ( i = 1; i < ds->numVerts && planar; i++ )
{
/* normal test */
if ( VectorCompare( plane, mesh->verts[ i ].normal ) == qfalse ) {
planar = qfalse;
}
/* point-plane test */
dist = DotProduct( mesh->verts[ i ].xyz, plane ) - plane[ 3 ];
if ( fabs( dist ) > EQUAL_EPSILON ) {
planar = qfalse;
}
}
/* add a map plane */
if ( planar ) {
/* make a map plane */
ds->planeNum = FindFloatPlane( plane, plane[ 3 ], 1, &mesh->verts[ 0 ].xyz );
VectorCopy( plane, ds->lightmapVecs[ 2 ] );
/* push this normal to all verts (ydnar 2003-02-14: bad idea, small patches get screwed up) */
for ( i = 0; i < ds->numVerts; i++ )
VectorCopy( plane, ds->verts[ i ].normal );
}
/* walk the verts to do special stuff */
for ( i = 0; i < ds->numVerts; i++ )
{
/* get the drawvert */
dv = &ds->verts[ i ];
/* ydnar: tek-fu celshading support for flat shaded shit */
if ( flat ) {
dv->st[ 0 ] = si->stFlat[ 0 ];
dv->st[ 1 ] = si->stFlat[ 1 ];
}
/* ydnar: gs mods: added support for explicit shader texcoord generation */
else if ( si->tcGen ) {
/* translate by origin and project the texture */
VectorAdd( dv->xyz, e->origin, vTranslated );
dv->st[ 0 ] = DotProduct( si->vecs[ 0 ], vTranslated );
dv->st[ 1 ] = DotProduct( si->vecs[ 1 ], vTranslated );
}
/* ydnar: set color */
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
{
dv->color[ k ][ 0 ] = 255;
dv->color[ k ][ 1 ] = 255;
dv->color[ k ][ 2 ] = 255;
dv->color[ k ][ 3 ] *= 1.0f;
}
}
/* set cel shader */
ds->celShader = p->celShader;
/* return the drawsurface */
return ds;
}
/*
DrawSurfaceForShader() - ydnar
creates a bogus surface to forcing the game to load a shader
*/
mapDrawSurface_t *DrawSurfaceForShader( char *shader ){
int i;
shaderInfo_t *si;
mapDrawSurface_t *ds;
/* get shader */
si = ShaderInfoForShader( shader, 0 );
/* find existing surface */
for ( i = 0; i < numMapDrawSurfs; i++ )
{
/* get surface */
ds = &mapDrawSurfs[ i ];
/* check it */
if ( ds->shaderInfo == si ) {
return ds;
}
}
/* create a new surface */
ds = AllocDrawSurface( SURFACE_SHADER );
ds->entityNum = 0;
ds->shaderInfo = ShaderInfoForShader( shader, 0 );
/* return to sender */
return ds;
}
/*
SubdivideFace()
subdivides a face surface until it is smaller than the specified size (subdivisions)
*/
static void SubdivideFace_r( entity_t *e, brush_t *brush, side_t *side, winding_t *w, int fogNum, int cubemapNum, float subdivisions ){
int i;
int axis;
vec3_t bounds[ 2 ];
const float epsilon = 0.1;
int subFloor, subCeil;
winding_t *frontWinding, *backWinding;
mapDrawSurface_t *ds;
/* dummy check */
if ( w == NULL ) {
return;
}
if ( w->numpoints < 3 ) {
Error( "SubdivideFace_r: Bad w->numpoints (%d < 3)", w->numpoints );
}
/* determine surface bounds */
ClearBounds( bounds[ 0 ], bounds[ 1 ] );
for ( i = 0; i < w->numpoints; i++ )
AddPointToBounds( w->p[ i ], bounds[ 0 ], bounds[ 1 ] );
/* split the face */
for ( axis = 0; axis < 3; axis++ )
{
vec3_t planePoint = { 0, 0, 0 };
vec3_t planeNormal = { 0, 0, 0 };
float d;
/* create an axial clipping plane */
subFloor = floor( bounds[ 0 ][ axis ] / subdivisions ) * subdivisions;
subCeil = ceil( bounds[ 1 ][ axis ] / subdivisions ) * subdivisions;
planePoint[ axis ] = subFloor + subdivisions;
planeNormal[ axis ] = -1;
d = DotProduct( planePoint, planeNormal );
/* subdivide if necessary */
if ( ( subCeil - subFloor ) > subdivisions ) {
/* clip the winding */
ClipWindingEpsilon( w, planeNormal, d, epsilon, &frontWinding, &backWinding ); /* not strict; we assume we always keep a winding */
/* the clip may not produce two polygons if it was epsilon close */
if ( frontWinding == NULL ) {
w = backWinding;
}
else if ( backWinding == NULL ) {
w = frontWinding;
}
else
{
SubdivideFace_r( e, brush, side, frontWinding, fogNum, cubemapNum, subdivisions );
SubdivideFace_r( e, brush, side, backWinding, fogNum, cubemapNum, subdivisions );
return;
}
}
}
/* create a face surface */
ds = DrawSurfaceForSide( e, brush, side, w );
/* set correct fog num */
ds->fogNum = fogNum;
ds->cubemapNum = cubemapNum;
}
/*
SubdivideFaceSurfaces()
chop up brush face surfaces that have subdivision attributes
ydnar: and subdivide surfaces that exceed specified texture coordinate range
*/
void SubdivideFaceSurfaces( entity_t *e, tree_t *tree ){
int i, j, numBaseDrawSurfs, fogNum, cubemapNum;
mapDrawSurface_t *ds;
brush_t *brush;
side_t *side;
shaderInfo_t *si;
winding_t *w;
float range, size, subdivisions, s2;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SubdivideFaceSurfaces ---\n" );
/* walk the list of surfaces */
numBaseDrawSurfs = numMapDrawSurfs;
for ( i = e->firstDrawSurf; i < numBaseDrawSurfs; i++ )
{
/* get surface */
ds = &mapDrawSurfs[ i ];
/* only subdivide brush sides */
if ( ds->type != SURFACE_FACE || ds->mapBrush == NULL || ds->sideRef == NULL || ds->sideRef->side == NULL ) {
continue;
}
/* get bits */
brush = ds->mapBrush;
side = ds->sideRef->side;
/* check subdivision for shader */
si = side->shaderInfo;
if ( si == NULL ) {
continue;
}
/* ydnar: don't subdivide sky surfaces */
if ( si->compileFlags & C_SKY ) {
continue;
}
/* do texture coordinate range check */
ClassifySurfaces( 1, ds );
if ( CalcSurfaceTextureRange( ds ) == qfalse ) {
/* calculate subdivisions texture range (this code is shit) */
range = ( ds->texRange[ 0 ] > ds->texRange[ 1 ] ? ds->texRange[ 0 ] : ds->texRange[ 1 ] );
size = ds->maxs[ 0 ] - ds->mins[ 0 ];
for ( j = 1; j < 3; j++ )
if ( ( ds->maxs[ j ] - ds->mins[ j ] ) > size ) {
size = ds->maxs[ j ] - ds->mins[ j ];
}
subdivisions = ( size / range ) * texRange;
subdivisions = ceil( subdivisions / 2 ) * 2;
for ( j = 1; j < 8; j++ )
{
s2 = ceil( (float) texRange / j );
if ( fabs( subdivisions - s2 ) <= 4.0 ) {
subdivisions = s2;
break;
}
}
}
else{
subdivisions = si->subdivisions;
}
/* get subdivisions from shader */
if ( si->subdivisions > 0 && si->subdivisions < subdivisions ) {
subdivisions = si->subdivisions;
}
if ( subdivisions < 1.0f ) {
continue;
}
/* preserve fog num */
fogNum = ds->fogNum;
cubemapNum = ds->cubemapNum;
/* make a winding and free the surface */
w = WindingFromDrawSurf( ds );
ClearSurface( ds );
/* subdivide it */
SubdivideFace_r( e, brush, side, w, fogNum, cubemapNum, subdivisions );
}
}
/*
====================
ClipSideIntoTree_r
Adds non-opaque leaf fragments to the convex hull
====================
*/
void ClipSideIntoTree_r( winding_t *w, side_t *side, node_t *node ){
plane_t *plane;
winding_t *front, *back;
if ( !w ) {
return;
}
if ( node->planenum != PLANENUM_LEAF ) {
if ( side->planenum == node->planenum ) {
ClipSideIntoTree_r( w, side, node->children[0] );
return;
}
if ( side->planenum == ( node->planenum ^ 1 ) ) {
ClipSideIntoTree_r( w, side, node->children[1] );
return;
}
plane = &mapplanes[ node->planenum ];
ClipWindingEpsilonStrict( w, plane->normal, plane->dist,
ON_EPSILON, &front, &back ); /* strict, we handle the "winding disappeared" case */
if ( !front && !back ) {
/* in doubt, register it in both nodes */
front = CopyWinding( w );
back = CopyWinding( w );
}
FreeWinding( w );
ClipSideIntoTree_r( front, side, node->children[0] );
ClipSideIntoTree_r( back, side, node->children[1] );
return;
}
// if opaque leaf, don't add
if ( !node->opaque ) {
AddWindingToConvexHull( w, &side->visibleHull, mapplanes[ side->planenum ].normal );
}
FreeWinding( w );
return;
}
static int g_numHiddenFaces, g_numCoinFaces;
/*
CullVectorCompare() - ydnar
compares two vectors with an epsilon
*/
#define CULL_EPSILON 0.1f
qboolean CullVectorCompare( const vec3_t v1, const vec3_t v2 ){
int i;
for ( i = 0; i < 3; i++ )
if ( fabs( v1[ i ] - v2[ i ] ) > CULL_EPSILON ) {
return qfalse;
}
return qtrue;
}
/*
SideInBrush() - ydnar
determines if a brushside lies inside another brush
*/
qboolean SideInBrush( side_t *side, brush_t *b ){
int i, s;
plane_t *plane;
/* ignore sides w/o windings or shaders */
if ( side->winding == NULL || side->shaderInfo == NULL ) {
return qtrue;
}
/* ignore culled sides and translucent brushes */
if ( side->culled == qtrue || ( b->compileFlags & C_TRANSLUCENT ) ) {
return qfalse;
}
/* side iterator */
for ( i = 0; i < b->numsides; i++ )
{
/* fail if any sides are caulk */
if ( b->sides[ i ].compileFlags & C_NODRAW ) {
return qfalse;
}
/* check if side's winding is on or behind the plane */
plane = &mapplanes[ b->sides[ i ].planenum ];
s = WindingOnPlaneSide( side->winding, plane->normal, plane->dist );
if ( s == SIDE_FRONT || s == SIDE_CROSS ) {
return qfalse;
}
}
/* don't cull autosprite or polygonoffset surfaces */
if ( side->shaderInfo ) {
if ( side->shaderInfo->autosprite || side->shaderInfo->polygonOffset ) {
return qfalse;
}
}
/* inside */
side->culled = qtrue;
g_numHiddenFaces++;
return qtrue;
}
/*
CullSides() - ydnar
culls obscured or buried brushsides from the map
*/
void CullSides( entity_t *e ){
int numPoints;
int i, j, k, l, first, second, dir;
winding_t *w1, *w2;
brush_t *b1, *b2;
side_t *side1, *side2;
/* note it */
Sys_FPrintf( SYS_VRB, "--- CullSides ---\n" );
g_numHiddenFaces = 0;
g_numCoinFaces = 0;
/* brush interator 1 */
for ( b1 = e->brushes; b1; b1 = b1->next )
{
/* sides check */
if ( b1->numsides < 1 ) {
continue;
}
/* brush iterator 2 */
for ( b2 = b1->next; b2; b2 = b2->next )
{
/* sides check */
if ( b2->numsides < 1 ) {
continue;
}
/* original check */
if ( b1->original == b2->original && b1->original != NULL ) {
continue;
}
/* bbox check */
j = 0;
for ( i = 0; i < 3; i++ )
if ( b1->mins[ i ] > b2->maxs[ i ] || b1->maxs[ i ] < b2->mins[ i ] ) {
j++;
}
if ( j ) {
continue;
}
/* cull inside sides */
for ( i = 0; i < b1->numsides; i++ )
SideInBrush( &b1->sides[ i ], b2 );
for ( i = 0; i < b2->numsides; i++ )
SideInBrush( &b2->sides[ i ], b1 );
/* side iterator 1 */
for ( i = 0; i < b1->numsides; i++ )
{
/* winding check */
side1 = &b1->sides[ i ];
w1 = side1->winding;
if ( w1 == NULL ) {
continue;
}
numPoints = w1->numpoints;
if ( side1->shaderInfo == NULL ) {
continue;
}
/* side iterator 2 */
for ( j = 0; j < b2->numsides; j++ )
{
/* winding check */
side2 = &b2->sides[ j ];
w2 = side2->winding;
if ( w2 == NULL ) {
continue;
}
if ( side2->shaderInfo == NULL ) {
continue;
}
if ( w1->numpoints != w2->numpoints ) {
continue;
}
if ( side1->culled == qtrue && side2->culled == qtrue ) {
continue;
}
/* compare planes */
if ( ( side1->planenum & ~0x00000001 ) != ( side2->planenum & ~0x00000001 ) ) {
continue;
}
/* get autosprite and polygonoffset status */
if ( side1->shaderInfo &&
( side1->shaderInfo->autosprite || side1->shaderInfo->polygonOffset ) ) {
continue;
}
if ( side2->shaderInfo &&
( side2->shaderInfo->autosprite || side2->shaderInfo->polygonOffset ) ) {
continue;
}
/* find first common point */
first = -1;
for ( k = 0; k < numPoints; k++ )
{
if ( VectorCompare( w1->p[ 0 ], w2->p[ k ] ) ) {
first = k;
k = numPoints;
}
}
if ( first == -1 ) {
continue;
}
/* find second common point (regardless of winding order) */
second = -1;
dir = 0;
if ( ( first + 1 ) < numPoints ) {
second = first + 1;
}
else{
second = 0;
}
if ( CullVectorCompare( w1->p[ 1 ], w2->p[ second ] ) ) {
dir = 1;
}
else
{
if ( first > 0 ) {
second = first - 1;
}
else{
second = numPoints - 1;
}
if ( CullVectorCompare( w1->p[ 1 ], w2->p[ second ] ) ) {
dir = -1;
}
}
if ( dir == 0 ) {
continue;
}
/* compare the rest of the points */
l = first;
for ( k = 0; k < numPoints; k++ )
{
if ( !CullVectorCompare( w1->p[ k ], w2->p[ l ] ) ) {
k = 100000;
}
l += dir;
if ( l < 0 ) {
l = numPoints - 1;
}
else if ( l >= numPoints ) {
l = 0;
}
}
if ( k >= 100000 ) {
continue;
}
/* cull face 1 */
if ( !side2->culled && !( side2->compileFlags & C_TRANSLUCENT ) && !( side2->compileFlags & C_NODRAW ) ) {
side1->culled = qtrue;
g_numCoinFaces++;
}
if ( side1->planenum == side2->planenum && side1->culled == qtrue ) {
continue;
}
/* cull face 2 */
if ( !side1->culled && !( side1->compileFlags & C_TRANSLUCENT ) && !( side1->compileFlags & C_NODRAW ) ) {
side2->culled = qtrue;
g_numCoinFaces++;
}
}
}
}
}
/* emit some stats */
Sys_FPrintf( SYS_VRB, "%9d hidden faces culled\n", g_numHiddenFaces );
Sys_FPrintf( SYS_VRB, "%9d coincident faces culled\n", g_numCoinFaces );
}
/*
ClipSidesIntoTree()
creates side->visibleHull for all visible sides
the drawsurf for a side will consist of the convex hull of
all points in non-opaque clusters, which allows overlaps
to be trimmed off automatically.
*/
void ClipSidesIntoTree( entity_t *e, tree_t *tree ){
brush_t *b;
int i;
winding_t *w;
side_t *side, *newSide;
shaderInfo_t *si;
/* ydnar: cull brush sides */
CullSides( e );
/* note it */
Sys_FPrintf( SYS_VRB, "--- ClipSidesIntoTree ---\n" );
/* walk the brush list */
for ( b = e->brushes; b; b = b->next )
{
/* walk the brush sides */
for ( i = 0; i < b->numsides; i++ )
{
/* get side */
side = &b->sides[ i ];
if ( side->winding == NULL ) {
continue;
}
/* copy the winding */
w = CopyWinding( side->winding );
side->visibleHull = NULL;
ClipSideIntoTree_r( w, side, tree->headnode );
/* anything left? */
w = side->visibleHull;
if ( w == NULL ) {
continue;
}
/* shader? */
si = side->shaderInfo;
if ( si == NULL ) {
continue;
}
/* don't create faces for non-visible sides */
/* ydnar: except indexed shaders, like common/terrain and nodraw fog surfaces */
if ( ( si->compileFlags & C_NODRAW ) && !( si->compileFlags & C_FOG ) ) {
continue;
}
/* always use the original winding for autosprites and noclip faces */
if ( si->autosprite || si->noClip ) {
w = side->winding;
}
/* save this winding as a visible surface */
DrawSurfaceForSide( e, b, side, w );
/* make a back side for fog */
if ( !( si->compileFlags & C_FOG ) ) {
continue;
}
/* duplicate the up-facing side */
w = ReverseWinding( w );
newSide = safe_malloc( sizeof( *side ) );
*newSide = *side;
newSide->visibleHull = w;
newSide->planenum ^= 1;
/* save this winding as a visible surface */
DrawSurfaceForSide( e, b, newSide, w );
}
}
}
/*
this section deals with filtering drawsurfaces into the bsp tree,
adding references to each leaf a surface touches
*/
/*
AddReferenceToLeaf() - ydnar
adds a reference to surface ds in the bsp leaf node
*/
int AddReferenceToLeaf( mapDrawSurface_t *ds, node_t *node ){
drawSurfRef_t *dsr;
/* dummy check */
if ( node->planenum != PLANENUM_LEAF || node->opaque ) {
return 0;
}
/* try to find an existing reference */
for ( dsr = node->drawSurfReferences; dsr; dsr = dsr->nextRef )
{
if ( dsr->outputNum == numBSPDrawSurfaces ) {
return 0;
}
}
/* add a new reference */
dsr = safe_malloc( sizeof( *dsr ) );
dsr->outputNum = numBSPDrawSurfaces;
dsr->nextRef = node->drawSurfReferences;
node->drawSurfReferences = dsr;
/* ydnar: sky/skybox surfaces */
if ( node->skybox ) {
ds->skybox = qtrue;
}
if ( ds->shaderInfo->compileFlags & C_SKY ) {
node->sky = qtrue;
}
/* return */
return 1;
}
/*
AddReferenceToTree_r() - ydnar
adds a reference to the specified drawsurface to every leaf in the tree
*/
int AddReferenceToTree_r( mapDrawSurface_t *ds, node_t *node, qboolean skybox ){
int i, refs = 0;
/* dummy check */
if ( node == NULL ) {
return 0;
}
/* is this a decision node? */
if ( node->planenum != PLANENUM_LEAF ) {
/* add to child nodes and return */
refs += AddReferenceToTree_r( ds, node->children[ 0 ], skybox );
refs += AddReferenceToTree_r( ds, node->children[ 1 ], skybox );
return refs;
}
/* ydnar */
if ( skybox ) {
/* skybox surfaces only get added to sky leaves */
if ( !node->sky ) {
return 0;
}
/* increase the leaf bounds */
for ( i = 0; i < ds->numVerts; i++ )
AddPointToBounds( ds->verts[ i ].xyz, node->mins, node->maxs );
}
/* add a reference */
return AddReferenceToLeaf( ds, node );
}
/*
FilterPointIntoTree_r() - ydnar
filters a single point from a surface into the tree
*/
int FilterPointIntoTree_r( vec3_t point, mapDrawSurface_t *ds, node_t *node ){
float d;
plane_t *plane;
int refs = 0;
/* is this a decision node? */
if ( node->planenum != PLANENUM_LEAF ) {
/* classify the point in relation to the plane */
plane = &mapplanes[ node->planenum ];
d = DotProduct( point, plane->normal ) - plane->dist;
/* filter by this plane */
refs = 0;
if ( d >= -ON_EPSILON ) {
refs += FilterPointIntoTree_r( point, ds, node->children[ 0 ] );
}
if ( d <= ON_EPSILON ) {
refs += FilterPointIntoTree_r( point, ds, node->children[ 1 ] );
}
/* return */
return refs;
}
/* add a reference */
return AddReferenceToLeaf( ds, node );
}
/*
FilterPointConvexHullIntoTree_r() - ydnar
filters the convex hull of multiple points from a surface into the tree
*/
int FilterPointConvexHullIntoTree_r( vec3_t **points, int npoints, mapDrawSurface_t *ds, node_t *node ){
float d, dmin, dmax;
plane_t *plane;
int refs = 0;
int i;
if ( !points ) {
return 0;
}
/* is this a decision node? */
if ( node->planenum != PLANENUM_LEAF ) {
/* classify the point in relation to the plane */
plane = &mapplanes[ node->planenum ];
dmin = dmax = DotProduct( *( points[0] ), plane->normal ) - plane->dist;
for ( i = 1; i < npoints; ++i )
{
d = DotProduct( *( points[i] ), plane->normal ) - plane->dist;
if ( d > dmax ) {
dmax = d;
}
if ( d < dmin ) {
dmin = d;
}
}
/* filter by this plane */
refs = 0;
if ( dmax >= -ON_EPSILON ) {
refs += FilterPointConvexHullIntoTree_r( points, npoints, ds, node->children[ 0 ] );
}
if ( dmin <= ON_EPSILON ) {
refs += FilterPointConvexHullIntoTree_r( points, npoints, ds, node->children[ 1 ] );
}
/* return */
return refs;
}
/* add a reference */
return AddReferenceToLeaf( ds, node );
}
/*
FilterWindingIntoTree_r() - ydnar
filters a winding from a drawsurface into the tree
*/
int FilterWindingIntoTree_r( winding_t *w, mapDrawSurface_t *ds, node_t *node ){
int i, refs = 0;
plane_t *p1, *p2;
vec4_t plane1, plane2;
winding_t *fat, *front, *back;
shaderInfo_t *si;
/* get shaderinfo */
si = ds->shaderInfo;
/* ydnar: is this the head node? */
if ( node->parent == NULL && si != NULL &&
( si->mins[ 0 ] != 0.0f || si->maxs[ 0 ] != 0.0f ||
si->mins[ 1 ] != 0.0f || si->maxs[ 1 ] != 0.0f ||
si->mins[ 2 ] != 0.0f || si->maxs[ 2 ] != 0.0f ) ) {
static qboolean warned = qfalse;
if ( !warned ) {
Sys_FPrintf( SYS_WRN, "WARNING: this map uses the deformVertexes move hack\n" );
warned = qtrue;
}
/* 'fatten' the winding by the shader mins/maxs (parsed from vertexDeform move) */
/* note this winding is completely invalid (concave, nonplanar, etc) */
fat = AllocWinding( w->numpoints * 3 + 3 );
fat->numpoints = w->numpoints * 3 + 3;
for ( i = 0; i < w->numpoints; i++ )
{
VectorCopy( w->p[ i ], fat->p[ i ] );
VectorAdd( w->p[ i ], si->mins, fat->p[ i + ( w->numpoints + 1 ) ] );
VectorAdd( w->p[ i ], si->maxs, fat->p[ i + ( w->numpoints + 1 ) * 2 ] );
}
VectorCopy( w->p[ 0 ], fat->p[ i ] );
VectorAdd( w->p[ 0 ], si->mins, fat->p[ i + w->numpoints ] );
VectorAdd( w->p[ 0 ], si->maxs, fat->p[ i + w->numpoints * 2 ] );
/*
* note: this winding is STILL not suitable for ClipWindingEpsilon, and
* also does not really fulfill the intention as it only contains
* origin, +mins, +maxs, but thanks to the "closing" points I just
* added to the three sub-windings, the fattening at least doesn't make
* it worse
*/
FreeWinding( w );
w = fat;
}
/* is this a decision node? */
if ( node->planenum != PLANENUM_LEAF ) {
/* get node plane */
p1 = &mapplanes[ node->planenum ];
VectorCopy( p1->normal, plane1 );
plane1[ 3 ] = p1->dist;
/* check if surface is planar */
if ( ds->planeNum >= 0 ) {
/* get surface plane */
p2 = &mapplanes[ ds->planeNum ];
VectorCopy( p2->normal, plane2 );
plane2[ 3 ] = p2->dist;
#if 0
/* div0: this is the plague (inaccurate) */
vec4_t reverse;
/* invert surface plane */
VectorSubtract( vec3_origin, plane2, reverse );
reverse[ 3 ] = -plane2[ 3 ];
/* compare planes */
if ( DotProduct( plane1, plane2 ) > 0.999f && fabs( plane1[ 3 ] - plane2[ 3 ] ) < 0.001f ) {
return FilterWindingIntoTree_r( w, ds, node->children[ 0 ] );
}
if ( DotProduct( plane1, reverse ) > 0.999f && fabs( plane1[ 3 ] - reverse[ 3 ] ) < 0.001f ) {
return FilterWindingIntoTree_r( w, ds, node->children[ 1 ] );
}
#else
(void) plane2;
/* div0: this is the cholera (doesn't hit enough) */
/* the drawsurf might have an associated plane, if so, force a filter here */
if ( ds->planeNum == node->planenum ) {
return FilterWindingIntoTree_r( w, ds, node->children[ 0 ] );
}
if ( ds->planeNum == ( node->planenum ^ 1 ) ) {
return FilterWindingIntoTree_r( w, ds, node->children[ 1 ] );
}
#endif
}
/* clip the winding by this plane */
ClipWindingEpsilonStrict( w, plane1, plane1[ 3 ], ON_EPSILON, &front, &back ); /* strict; we handle the "winding disappeared" case */
/* filter by this plane */
refs = 0;
if ( front == NULL && back == NULL ) {
/* same plane, this is an ugly hack */
/* but better too many than too few refs */
refs += FilterWindingIntoTree_r( CopyWinding( w ), ds, node->children[ 0 ] );
refs += FilterWindingIntoTree_r( CopyWinding( w ), ds, node->children[ 1 ] );
}
if ( front != NULL ) {
refs += FilterWindingIntoTree_r( front, ds, node->children[ 0 ] );
}
if ( back != NULL ) {
refs += FilterWindingIntoTree_r( back, ds, node->children[ 1 ] );
}
FreeWinding( w );
/* return */
return refs;
}
/* add a reference */
return AddReferenceToLeaf( ds, node );
}
/*
FilterFaceIntoTree()
filters a planar winding face drawsurface into the bsp tree
*/
int FilterFaceIntoTree( mapDrawSurface_t *ds, tree_t *tree ){
winding_t *w;
int refs = 0;
/* make a winding and filter it into the tree */
w = WindingFromDrawSurf( ds );
refs = FilterWindingIntoTree_r( w, ds, tree->headnode );
/* return */
return refs;
}
/*
FilterPatchIntoTree()
subdivides a patch into an approximate curve and filters it into the tree
*/
#define FILTER_SUBDIVISION 8
static int FilterPatchIntoTree( mapDrawSurface_t *ds, tree_t *tree ){
int x, y, refs = 0;
for ( y = 0; y + 2 < ds->patchHeight; y += 2 )
for ( x = 0; x + 2 < ds->patchWidth; x += 2 )
{
vec3_t *points[9];
points[0] = &ds->verts[( y + 0 ) * ds->patchWidth + ( x + 0 )].xyz;
points[1] = &ds->verts[( y + 0 ) * ds->patchWidth + ( x + 1 )].xyz;
points[2] = &ds->verts[( y + 0 ) * ds->patchWidth + ( x + 2 )].xyz;
points[3] = &ds->verts[( y + 1 ) * ds->patchWidth + ( x + 0 )].xyz;
points[4] = &ds->verts[( y + 1 ) * ds->patchWidth + ( x + 1 )].xyz;
points[5] = &ds->verts[( y + 1 ) * ds->patchWidth + ( x + 2 )].xyz;
points[6] = &ds->verts[( y + 2 ) * ds->patchWidth + ( x + 0 )].xyz;
points[7] = &ds->verts[( y + 2 ) * ds->patchWidth + ( x + 1 )].xyz;
points[8] = &ds->verts[( y + 2 ) * ds->patchWidth + ( x + 2 )].xyz;
refs += FilterPointConvexHullIntoTree_r( points, 9, ds, tree->headnode );
}
return refs;
}
/*
FilterTrianglesIntoTree()
filters a triangle surface (meta, model) into the bsp
*/
static int FilterTrianglesIntoTree( mapDrawSurface_t *ds, tree_t *tree ){
int i, refs;
winding_t *w;
/* ydnar: gs mods: this was creating bogus triangles before */
refs = 0;
for ( i = 0; i < ds->numIndexes; i += 3 )
{
/* error check */
if ( ds->indexes[ i ] >= ds->numVerts ||
ds->indexes[ i + 1 ] >= ds->numVerts ||
ds->indexes[ i + 2 ] >= ds->numVerts ) {
Error( "Index %d greater than vertex count %d", ds->indexes[ i ], ds->numVerts );
}
/* make a triangle winding and filter it into the tree */
w = AllocWinding( 3 );
w->numpoints = 3;
VectorCopy( ds->verts[ ds->indexes[ i ] ].xyz, w->p[ 0 ] );
VectorCopy( ds->verts[ ds->indexes[ i + 1 ] ].xyz, w->p[ 1 ] );
VectorCopy( ds->verts[ ds->indexes[ i + 2 ] ].xyz, w->p[ 2 ] );
refs += FilterWindingIntoTree_r( w, ds, tree->headnode );
}
/* use point filtering as well */
for ( i = 0; i < ds->numVerts; i++ )
refs += FilterPointIntoTree_r( ds->verts[ i ].xyz, ds, tree->headnode );
return refs;
}
/*
FilterFoliageIntoTree()
filters a foliage surface (wolf et/splash damage)
*/
static int FilterFoliageIntoTree( mapDrawSurface_t *ds, tree_t *tree ){
int f, i, refs;
bspDrawVert_t *instance;
vec3_t xyz;
winding_t *w;
/* walk origin list */
refs = 0;
for ( f = 0; f < ds->numFoliageInstances; f++ )
{
/* get instance */
instance = ds->verts + ds->patchHeight + f;
/* walk triangle list */
for ( i = 0; i < ds->numIndexes; i += 3 )
{
/* error check */
if ( ds->indexes[ i ] >= ds->numVerts ||
ds->indexes[ i + 1 ] >= ds->numVerts ||
ds->indexes[ i + 2 ] >= ds->numVerts ) {
Error( "Index %d greater than vertex count %d", ds->indexes[ i ], ds->numVerts );
}
/* make a triangle winding and filter it into the tree */
w = AllocWinding( 3 );
w->numpoints = 3;
VectorAdd( instance->xyz, ds->verts[ ds->indexes[ i ] ].xyz, w->p[ 0 ] );
VectorAdd( instance->xyz, ds->verts[ ds->indexes[ i + 1 ] ].xyz, w->p[ 1 ] );
VectorAdd( instance->xyz, ds->verts[ ds->indexes[ i + 2 ] ].xyz, w->p[ 2 ] );
refs += FilterWindingIntoTree_r( w, ds, tree->headnode );
}
/* use point filtering as well */
for ( i = 0; i < ( ds->numVerts - ds->numFoliageInstances ); i++ )
{
VectorAdd( instance->xyz, ds->verts[ i ].xyz, xyz );
refs += FilterPointIntoTree_r( xyz, ds, tree->headnode );
}
}
return refs;
}
/*
EmitDrawVerts() - ydnar
emits bsp drawverts from a map drawsurface
*/
void EmitDrawVerts( mapDrawSurface_t *ds, bspDrawSurface_t *out ){
int i, k;
bspDrawVert_t *dv;
shaderInfo_t *si;
float offset;
/* get stuff */
si = ds->shaderInfo;
offset = si->offset;
/* copy the verts */
out->firstVert = numBSPDrawVerts;
out->numVerts = ds->numVerts;
for ( i = 0; i < ds->numVerts; i++ )
{
/* allocate a new vert */
IncDrawVerts();
dv = &bspDrawVerts[ numBSPDrawVerts - 1 ];
/* copy it */
memcpy( dv, &ds->verts[ i ], sizeof( *dv ) );
/* offset? */
if ( offset != 0.0f ) {
VectorMA( dv->xyz, offset, dv->normal, dv->xyz );
}
/* expand model bounds
necessary because of misc_model surfaces on entities
note: does not happen on worldspawn as its bounds is only used for determining lightgrid bounds */
if ( numBSPModels > 0 ) {
AddPointToBounds( dv->xyz, bspModels[ numBSPModels ].mins, bspModels[ numBSPModels ].maxs );
}
/* debug color? */
if ( debugSurfaces ) {
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
VectorCopy( debugColors[ ( ds - mapDrawSurfs ) % 12 ], dv->color[ k ] );
}
}
}
/*
FindDrawIndexes() - ydnar
this attempts to find a run of indexes in the bsp that match the given indexes
this tends to reduce the size of the bsp index pool by 1/3 or more
returns numIndexes + 1 if the search failed
*/
int FindDrawIndexes( int numIndexes, int *indexes ){
int i, j, numTestIndexes;
/* dummy check */
if ( numIndexes < 3 || numBSPDrawIndexes < numIndexes || indexes == NULL ) {
return numBSPDrawIndexes;
}
/* set limit */
numTestIndexes = 1 + numBSPDrawIndexes - numIndexes;
/* handle 3 indexes as a special case for performance */
if ( numIndexes == 3 ) {
/* run through all indexes */
for ( i = 0; i < numTestIndexes; i++ )
{
/* test 3 indexes */
if ( indexes[ 0 ] == bspDrawIndexes[ i ] &&
indexes[ 1 ] == bspDrawIndexes[ i + 1 ] &&
indexes[ 2 ] == bspDrawIndexes[ i + 2 ] ) {
numRedundantIndexes += numIndexes;
return i;
}
}
/* failed */
return numBSPDrawIndexes;
}
/* handle 4 or more indexes */
for ( i = 0; i < numTestIndexes; i++ )
{
/* test first 4 indexes */
if ( indexes[ 0 ] == bspDrawIndexes[ i ] &&
indexes[ 1 ] == bspDrawIndexes[ i + 1 ] &&
indexes[ 2 ] == bspDrawIndexes[ i + 2 ] &&
indexes[ 3 ] == bspDrawIndexes[ i + 3 ] ) {
/* handle 4 indexes */
if ( numIndexes == 4 ) {
return i;
}
/* test the remainder */
for ( j = 4; j < numIndexes; j++ )
{
if ( indexes[ j ] != bspDrawIndexes[ i + j ] ) {
break;
}
else if ( j == ( numIndexes - 1 ) ) {
numRedundantIndexes += numIndexes;
return i;
}
}
}
}
/* failed */
return numBSPDrawIndexes;
}
/*
EmitDrawIndexes() - ydnar
attempts to find an existing run of drawindexes before adding new ones
*/
void EmitDrawIndexes( mapDrawSurface_t *ds, bspDrawSurface_t *out ){
int i;
/* attempt to use redundant indexing */
out->firstIndex = FindDrawIndexes( ds->numIndexes, ds->indexes );
out->numIndexes = ds->numIndexes;
if ( out->firstIndex == numBSPDrawIndexes ) {
/* copy new unique indexes */
for ( i = 0; i < ds->numIndexes; i++ )
{
AUTOEXPAND_BY_REALLOC_BSP( DrawIndexes, 1024 );
bspDrawIndexes[ numBSPDrawIndexes ] = ds->indexes[ i ];
/* validate the index */
if ( ds->type != SURFACE_PATCH ) {
if ( bspDrawIndexes[ numBSPDrawIndexes ] < 0 || bspDrawIndexes[ numBSPDrawIndexes ] >= ds->numVerts ) {
Sys_FPrintf( SYS_WRN, "WARNING: %d %s has invalid index %d (%d)\n",
numBSPDrawSurfaces,
ds->shaderInfo->shader,
bspDrawIndexes[ numBSPDrawIndexes ],
i );
bspDrawIndexes[ numBSPDrawIndexes ] = 0;
}
}
/* increment index count */
numBSPDrawIndexes++;
}
}
}
/*
EmitSurface()
emits a bsp drawsurface
*/
void EmitSurface( mapDrawSurface_t *ds ){
int i;
bspDrawSurface_t *out;
/* ydnar: nuking useless drawsurfaces */
if ( ds->type != SURFACE_SHADER ) {
return;
}
/* limit check */
if ( numBSPDrawSurfaces == MAX_MAP_DRAW_SURFS ) {
Error( "MAX_MAP_DRAW_SURFS" );
}
/* allocate a new surface */
if ( numBSPDrawSurfaces == MAX_MAP_DRAW_SURFS ) {
Error( "MAX_MAP_DRAW_SURFS" );
}
out = &bspDrawSurfaces[ numBSPDrawSurfaces ];
ds->outputNum = numBSPDrawSurfaces;
numBSPDrawSurfaces++;
memset( out, 0, sizeof( *out ) );
/* set it up */
out->surfaceType = MST_FLARE;
out->shaderNum = EmitShader( ds->shaderInfo->shader, &ds->shaderInfo->contentFlags, &ds->shaderInfo->surfaceFlags );
out->fogNum = ds->fogNum;
bspDrawSurfaceCubemaps[ds->outputNum] = ds->cubemapNum;
/* RBSP */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
out->lightmapNum[ i ] = -3;
out->lightmapStyles[ i ] = LS_NONE;
out->vertexStyles[ i ] = LS_NONE;
}
out->lightmapStyles[ 0 ] = ds->lightStyle;
out->vertexStyles[ 0 ] = ds->lightStyle;
VectorCopy( ds->lightmapOrigin, out->lightmapOrigin ); /* origin */
VectorCopy( ds->lightmapVecs[ 0 ], out->lightmapVecs[ 0 ] ); /* color */
VectorCopy( ds->lightmapVecs[ 1 ], out->lightmapVecs[ 1 ] );
VectorCopy( ds->lightmapVecs[ 2 ], out->lightmapVecs[ 2 ] ); /* normal */
/* add to count */
numSurfacesByType[ ds->type ]++;
}
/*
EmitPatchSurface()
emits a bsp patch drawsurface
*/
void EmitPatchSurface( entity_t *e, mapDrawSurface_t *ds ){
int i, j;
bspDrawSurface_t *out;
int surfaceFlags, contentFlags;
int forcePatchMeta;
/* vortex: _patchMeta support */
forcePatchMeta = IntForKey( e, "_patchMeta" );
if ( !forcePatchMeta ) {
forcePatchMeta = IntForKey( e, "patchMeta" );
}
/* invert the surface if necessary */
if ( ds->backSide || ds->shaderInfo->invert ) {
bspDrawVert_t *dv1, *dv2, temp;
/* walk the verts, flip the normal */
for ( i = 0; i < ds->numVerts; i++ )
VectorScale( ds->verts[ i ].normal, -1.0f, ds->verts[ i ].normal );
/* walk the verts again, but this time reverse their order */
for ( j = 0; j < ds->patchHeight; j++ )
{
for ( i = 0; i < ( ds->patchWidth / 2 ); i++ )
{
dv1 = &ds->verts[ j * ds->patchWidth + i ];
dv2 = &ds->verts[ j * ds->patchWidth + ( ds->patchWidth - i - 1 ) ];
memcpy( &temp, dv1, sizeof( bspDrawVert_t ) );
memcpy( dv1, dv2, sizeof( bspDrawVert_t ) );
memcpy( dv2, &temp, sizeof( bspDrawVert_t ) );
}
}
/* invert facing */
VectorScale( ds->lightmapVecs[ 2 ], -1.0f, ds->lightmapVecs[ 2 ] );
}
/* allocate a new surface */
if ( numBSPDrawSurfaces == MAX_MAP_DRAW_SURFS ) {
Error( "MAX_MAP_DRAW_SURFS" );
}
out = &bspDrawSurfaces[ numBSPDrawSurfaces ];
ds->outputNum = numBSPDrawSurfaces;
numBSPDrawSurfaces++;
memset( out, 0, sizeof( *out ) );
/* set it up */
if (ds->subdiv_x >= 0 && ds->subdiv_y >= 0)
out->surfaceType = MST_PATCHFIXED;
else
out->surfaceType = MST_PATCH;
surfaceFlags = ds->shaderInfo->surfaceFlags;
contentFlags = ds->shaderInfo->contentFlags;
if (ds->mapMesh->nosolid) {
contentFlags &= ~1;
surfaceFlags |= 0x4000;
}
if ( debugSurfaces ) {
out->shaderNum = EmitShader( "debugsurfaces", NULL, NULL );
}
else if ( out->surfaceType == MST_PATCH && (patchMeta || forcePatchMeta) ) {
/* patch meta requires that we have nodraw patches for collision */
ApplySurfaceParm( "nodraw", &contentFlags, &surfaceFlags, NULL );
ApplySurfaceParm( "pointlight", &contentFlags, &surfaceFlags, NULL );
/* we don't want this patch getting lightmapped */
VectorClear( ds->lightmapVecs[ 2 ] );
VectorClear( ds->lightmapAxis );
ds->sampleSize = 0;
out->shaderNum = EmitShader( ds->shaderInfo->shader, &contentFlags, &surfaceFlags );
} else{
out->shaderNum = EmitShader( ds->shaderInfo->shader, &contentFlags, &surfaceFlags );
}
out->patchWidth = ds->patchWidth;
out->patchHeight = ds->patchHeight;
if (out->surfaceType == MST_PATCHFIXED)
{ // report subdivisions in the high bits
out->patchWidth |= ds->subdiv_x << 16;
out->patchHeight |= ds->subdiv_y << 16;
}
out->fogNum = ds->fogNum;
bspDrawSurfaceCubemaps[ds->outputNum] = ds->cubemapNum;
/* RBSP */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
out->lightmapNum[ i ] = -3;
out->lightmapStyles[ i ] = LS_NONE;
out->vertexStyles[ i ] = LS_NONE;
}
out->lightmapStyles[ 0 ] = LS_NORMAL;
out->vertexStyles[ 0 ] = LS_NORMAL;
/* ydnar: gs mods: previously, the lod bounds were stored in lightmapVecs[ 0 ] and [ 1 ], moved to bounds[ 0 ] and [ 1 ] */
VectorCopy( ds->lightmapOrigin, out->lightmapOrigin );
VectorCopy( ds->bounds[ 0 ], out->lightmapVecs[ 0 ] );
VectorCopy( ds->bounds[ 1 ], out->lightmapVecs[ 1 ] );
VectorCopy( ds->lightmapVecs[ 2 ], out->lightmapVecs[ 2 ] );
/* ydnar: gs mods: clear out the plane normal */
if ( ds->planar == qfalse ) {
VectorClear( out->lightmapVecs[ 2 ] );
}
/* emit the verts and indexes */
EmitDrawVerts( ds, out );
EmitDrawIndexes( ds, out );
/* add to count */
numSurfacesByType[ ds->type ]++;
}
/*
OptimizeTriangleSurface() - ydnar
optimizes the vertex/index data in a triangle surface
*/
#define VERTEX_CACHE_SIZE 16
static void OptimizeTriangleSurface( mapDrawSurface_t *ds ){
int i, j, k, temp, first, best, bestScore, score;
int vertexCache[ VERTEX_CACHE_SIZE + 1 ]; /* one more for optimizing insert */
int *indexes;
/* certain surfaces don't get optimized */
if ( ds->numIndexes <= VERTEX_CACHE_SIZE ||
ds->shaderInfo->autosprite ) {
return;
}
/* create index scratch pad */
indexes = safe_malloc( ds->numIndexes * sizeof( *indexes ) );
memcpy( indexes, ds->indexes, ds->numIndexes * sizeof( *indexes ) );
/* setup */
for ( i = 0; i <= VERTEX_CACHE_SIZE && i < ds->numIndexes; i++ )
vertexCache[ i ] = indexes[ i ];
/* add triangles in a vertex cache-aware order */
for ( i = 0; i < ds->numIndexes; i += 3 )
{
/* find best triangle given the current vertex cache */
first = -1;
best = -1;
bestScore = -1;
for ( j = 0; j < ds->numIndexes; j += 3 )
{
/* valid triangle? */
if ( indexes[ j ] != -1 ) {
/* set first if necessary */
if ( first < 0 ) {
first = j;
}
/* score the triangle */
score = 0;
for ( k = 0; k < VERTEX_CACHE_SIZE; k++ )
{
if ( indexes[ j ] == vertexCache[ k ] || indexes[ j + 1 ] == vertexCache[ k ] || indexes[ j + 2 ] == vertexCache[ k ] ) {
score++;
}
}
/* better triangle? */
if ( score > bestScore ) {
bestScore = score;
best = j;
}
/* a perfect score of 3 means this triangle's verts are already present in the vertex cache */
if ( score == 3 ) {
break;
}
}
}
/* check if no decent triangle was found, and use first available */
if ( best < 0 ) {
best = first;
}
/* valid triangle? */
if ( best >= 0 ) {
/* add triangle to vertex cache */
for ( j = 0; j < 3; j++ )
{
for ( k = 0; k < VERTEX_CACHE_SIZE; k++ )
{
if ( indexes[ best + j ] == vertexCache[ k ] ) {
break;
}
}
if ( k >= VERTEX_CACHE_SIZE ) {
/* pop off top of vertex cache */
for ( k = VERTEX_CACHE_SIZE; k > 0; k-- )
vertexCache[ k ] = vertexCache[ k - 1 ];
/* add vertex */
vertexCache[ 0 ] = indexes[ best + j ];
}
}
/* add triangle to surface */
ds->indexes[ i ] = indexes[ best ];
ds->indexes[ i + 1 ] = indexes[ best + 1 ];
ds->indexes[ i + 2 ] = indexes[ best + 2 ];
/* clear from input pool */
indexes[ best ] = -1;
indexes[ best + 1 ] = -1;
indexes[ best + 2 ] = -1;
/* sort triangle windings (312 -> 123) */
while ( ds->indexes[ i ] > ds->indexes[ i + 1 ] || ds->indexes[ i ] > ds->indexes[ i + 2 ] )
{
temp = ds->indexes[ i ];
ds->indexes[ i ] = ds->indexes[ i + 1 ];
ds->indexes[ i + 1 ] = ds->indexes[ i + 2 ];
ds->indexes[ i + 2 ] = temp;
}
}
}
/* clean up */
free( indexes );
}
/*
EmitTriangleSurface()
creates a bsp drawsurface from arbitrary triangle surfaces
*/
void EmitTriangleSurface( mapDrawSurface_t *ds ){
int i, temp;
bspDrawSurface_t *out;
/* invert the surface if necessary */
if ( ds->backSide || ds->shaderInfo->invert ) {
/* walk the indexes, reverse the triangle order */
for ( i = 0; i < ds->numIndexes; i += 3 )
{
temp = ds->indexes[ i ];
ds->indexes[ i ] = ds->indexes[ i + 1 ];
ds->indexes[ i + 1 ] = temp;
}
/* walk the verts, flip the normal */
for ( i = 0; i < ds->numVerts; i++ )
VectorScale( ds->verts[ i ].normal, -1.0f, ds->verts[ i ].normal );
/* invert facing */
VectorScale( ds->lightmapVecs[ 2 ], -1.0f, ds->lightmapVecs[ 2 ] );
}
/* allocate a new surface */
if ( numBSPDrawSurfaces == MAX_MAP_DRAW_SURFS ) {
Error( "MAX_MAP_DRAW_SURFS" );
}
out = &bspDrawSurfaces[ numBSPDrawSurfaces ];
ds->outputNum = numBSPDrawSurfaces;
numBSPDrawSurfaces++;
memset( out, 0, sizeof( *out ) );
/* ydnar/sd: handle wolf et foliage surfaces */
if ( ds->type == SURFACE_FOLIAGE ) {
out->surfaceType = MST_FOLIAGE;
}
/* ydnar: gs mods: handle lightmapped terrain (force to planar type) */
//% else if( VectorLength( ds->lightmapAxis ) <= 0.0f || ds->type == SURFACE_TRIANGLES || ds->type == SURFACE_FOGHULL || debugSurfaces )
else if ( ( VectorLength( ds->lightmapAxis ) <= 0.0f && ds->planar == qfalse ) ||
ds->type == SURFACE_TRIANGLES ||
ds->type == SURFACE_FOGHULL ||
ds->numVerts > maxLMSurfaceVerts ||
debugSurfaces ) {
out->surfaceType = MST_TRIANGLE_SOUP;
}
/* set to a planar face */
else{
out->surfaceType = MST_PLANAR;
}
/* set it up */
if ( debugSurfaces ) {
out->shaderNum = EmitShader( "debugsurfaces", NULL, NULL );
}
else{
out->shaderNum = EmitShader( ds->shaderInfo->shader, &ds->shaderInfo->contentFlags, &ds->shaderInfo->surfaceFlags );
}
out->patchWidth = ds->patchWidth;
out->patchHeight = ds->patchHeight;
out->fogNum = ds->fogNum;
bspDrawSurfaceCubemaps[ds->outputNum] = ds->cubemapNum;
/* debug inset (push each triangle vertex towards the center of each triangle it is on */
if ( debugInset ) {
bspDrawVert_t *a, *b, *c;
vec3_t cent, dir;
/* walk triangle list */
for ( i = 0; i < ds->numIndexes; i += 3 )
{
/* get verts */
a = &ds->verts[ ds->indexes[ i ] ];
b = &ds->verts[ ds->indexes[ i + 1 ] ];
c = &ds->verts[ ds->indexes[ i + 2 ] ];
/* calculate centroid */
VectorCopy( a->xyz, cent );
VectorAdd( cent, b->xyz, cent );
VectorAdd( cent, c->xyz, cent );
VectorScale( cent, 1.0f / 3.0f, cent );
/* offset each vertex */
VectorSubtract( cent, a->xyz, dir );
VectorNormalize( dir, dir );
VectorAdd( a->xyz, dir, a->xyz );
VectorSubtract( cent, b->xyz, dir );
VectorNormalize( dir, dir );
VectorAdd( b->xyz, dir, b->xyz );
VectorSubtract( cent, c->xyz, dir );
VectorNormalize( dir, dir );
VectorAdd( c->xyz, dir, c->xyz );
}
}
/* RBSP */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
out->lightmapNum[ i ] = -3;
out->lightmapStyles[ i ] = LS_NONE;
out->vertexStyles[ i ] = LS_NONE;
}
out->lightmapStyles[ 0 ] = LS_NORMAL;
out->vertexStyles[ 0 ] = LS_NORMAL;
/* lightmap vectors (lod bounds for patches */
VectorCopy( ds->lightmapOrigin, out->lightmapOrigin );
VectorCopy( ds->lightmapVecs[ 0 ], out->lightmapVecs[ 0 ] );
VectorCopy( ds->lightmapVecs[ 1 ], out->lightmapVecs[ 1 ] );
VectorCopy( ds->lightmapVecs[ 2 ], out->lightmapVecs[ 2 ] );
/* ydnar: gs mods: clear out the plane normal */
if ( ds->planar == qfalse ) {
VectorClear( out->lightmapVecs[ 2 ] );
}
/* optimize the surface's triangles */
OptimizeTriangleSurface( ds );
/* emit the verts and indexes */
EmitDrawVerts( ds, out );
EmitDrawIndexes( ds, out );
/* add to count */
numSurfacesByType[ ds->type ]++;
}
/*
EmitFaceSurface()
emits a bsp planar winding (brush face) drawsurface
*/
static void EmitFaceSurface( mapDrawSurface_t *ds ){
/* strip/fan finding was moved elsewhere */
if ( maxAreaFaceSurface ) {
MaxAreaFaceSurface( ds );
}
else{
StripFaceSurface( ds );
}
EmitTriangleSurface( ds );
}
/*
MakeDebugPortalSurfs_r() - ydnar
generates drawsurfaces for passable portals in the bsp
*/
static void MakeDebugPortalSurfs_r( node_t *node, shaderInfo_t *si ){
int i, k, c, s;
portal_t *p;
winding_t *w;
mapDrawSurface_t *ds;
bspDrawVert_t *dv;
/* recurse if decision node */
if ( node->planenum != PLANENUM_LEAF ) {
MakeDebugPortalSurfs_r( node->children[ 0 ], si );
MakeDebugPortalSurfs_r( node->children[ 1 ], si );
return;
}
/* don't bother with opaque leaves */
if ( node->opaque ) {
return;
}
/* walk the list of portals */
for ( c = 0, p = node->portals; p != NULL; c++, p = p->next[ s ] )
{
/* get winding and side even/odd */
w = p->winding;
s = ( p->nodes[ 1 ] == node );
/* is this a valid portal for this leaf? */
if ( w && p->nodes[ 0 ] == node ) {
/* is this portal passable? */
if ( PortalPassable( p ) == qfalse ) {
continue;
}
/* check max points */
if ( w->numpoints > 64 ) {
Error( "MakePortalSurfs_r: w->numpoints = %d", w->numpoints );
}
/* allocate a drawsurface */
ds = AllocDrawSurface( SURFACE_FACE );
ds->shaderInfo = si;
ds->planar = qtrue;
ds->sideRef = AllocSideRef( p->side, NULL );
ds->planeNum = FindFloatPlane( p->plane.normal, p->plane.dist, 0, NULL );
VectorCopy( p->plane.normal, ds->lightmapVecs[ 2 ] );
ds->fogNum = -1;
ds->cubemapNum = -1;
ds->numVerts = w->numpoints;
ds->verts = safe_malloc( ds->numVerts * sizeof( *ds->verts ) );
memset( ds->verts, 0, ds->numVerts * sizeof( *ds->verts ) );
/* walk the winding */
for ( i = 0; i < ds->numVerts; i++ )
{
/* get vert */
dv = ds->verts + i;
/* set it */
VectorCopy( w->p[ i ], dv->xyz );
VectorCopy( p->plane.normal, dv->normal );
dv->st[ 0 ] = 0;
dv->st[ 1 ] = 0;
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
{
VectorCopy( debugColors[ c % 12 ], dv->color[ k ] );
dv->color[ k ][ 3 ] = 32;
}
}
}
}
}
/*
MakeDebugPortalSurfs() - ydnar
generates drawsurfaces for passable portals in the bsp
*/
void MakeDebugPortalSurfs( tree_t *tree ){
shaderInfo_t *si;
/* note it */
Sys_FPrintf( SYS_VRB, "--- MakeDebugPortalSurfs ---\n" );
/* get portal debug shader */
si = ShaderInfoForShader( "debugportals", 0 );
/* walk the tree */
MakeDebugPortalSurfs_r( tree->headnode, si );
}
/*
MakeFogHullSurfs()
generates drawsurfaces for a foghull (this MUST use a sky shader)
*/
void MakeFogHullSurfs( entity_t *e, tree_t *tree, char *shader ){
shaderInfo_t *si;
mapDrawSurface_t *ds;
vec3_t fogMins, fogMaxs;
int i, indexes[] =
{
0, 1, 2, 0, 2, 3,
4, 7, 5, 5, 7, 6,
1, 5, 6, 1, 6, 2,
0, 4, 5, 0, 5, 1,
2, 6, 7, 2, 7, 3,
3, 7, 4, 3, 4, 0
};
/* dummy check */
if ( shader == NULL || shader[ 0 ] == '\0' ) {
return;
}
/* note it */
Sys_FPrintf( SYS_VRB, "--- MakeFogHullSurfs ---\n" );
/* get hull bounds */
VectorCopy( mapMins, fogMins );
VectorCopy( mapMaxs, fogMaxs );
for ( i = 0; i < 3; i++ )
{
fogMins[ i ] -= 128;
fogMaxs[ i ] += 128;
}
/* get foghull shader */
si = ShaderInfoForShader( shader, 0 );
/* allocate a drawsurface */
ds = AllocDrawSurface( SURFACE_FOGHULL );
ds->shaderInfo = si;
ds->fogNum = -1;
ds->cubemapNum = -1;
ds->numVerts = 8;
ds->verts = safe_malloc( ds->numVerts * sizeof( *ds->verts ) );
memset( ds->verts, 0, ds->numVerts * sizeof( *ds->verts ) );
ds->numIndexes = 36;
ds->indexes = safe_malloc( ds->numIndexes * sizeof( *ds->indexes ) );
memset( ds->indexes, 0, ds->numIndexes * sizeof( *ds->indexes ) );
/* set verts */
VectorSet( ds->verts[ 0 ].xyz, fogMins[ 0 ], fogMins[ 1 ], fogMins[ 2 ] );
VectorSet( ds->verts[ 1 ].xyz, fogMins[ 0 ], fogMaxs[ 1 ], fogMins[ 2 ] );
VectorSet( ds->verts[ 2 ].xyz, fogMaxs[ 0 ], fogMaxs[ 1 ], fogMins[ 2 ] );
VectorSet( ds->verts[ 3 ].xyz, fogMaxs[ 0 ], fogMins[ 1 ], fogMins[ 2 ] );
VectorSet( ds->verts[ 4 ].xyz, fogMins[ 0 ], fogMins[ 1 ], fogMaxs[ 2 ] );
VectorSet( ds->verts[ 5 ].xyz, fogMins[ 0 ], fogMaxs[ 1 ], fogMaxs[ 2 ] );
VectorSet( ds->verts[ 6 ].xyz, fogMaxs[ 0 ], fogMaxs[ 1 ], fogMaxs[ 2 ] );
VectorSet( ds->verts[ 7 ].xyz, fogMaxs[ 0 ], fogMins[ 1 ], fogMaxs[ 2 ] );
/* set indexes */
memcpy( ds->indexes, indexes, ds->numIndexes * sizeof( *ds->indexes ) );
}
/*
BiasSurfaceTextures()
biases a surface's texcoords as close to 0 as possible
*/
void BiasSurfaceTextures( mapDrawSurface_t *ds ){
int i;
/* calculate the surface texture bias */
CalcSurfaceTextureRange( ds );
/* don't bias globaltextured shaders */
if ( ds->shaderInfo->globalTexture ) {
return;
}
/* bias the texture coordinates */
for ( i = 0; i < ds->numVerts; i++ )
{
ds->verts[ i ].st[ 0 ] += ds->bias[ 0 ];
ds->verts[ i ].st[ 1 ] += ds->bias[ 1 ];
}
}
/*
AddSurfaceModelsToTriangle_r()
adds models to a specified triangle, returns the number of models added
*/
int AddSurfaceModelsToTriangle_r( mapDrawSurface_t *ds, surfaceModel_t *model, bspDrawVert_t **tri ){
bspDrawVert_t mid, *tri2[ 3 ];
int max, n, localNumSurfaceModels;
/* init */
localNumSurfaceModels = 0;
/* subdivide calc */
{
int i;
float *a, *b, dx, dy, dz, dist, maxDist;
/* find the longest edge and split it */
max = -1;
maxDist = 0.0f;
for ( i = 0; i < 3; i++ )
{
/* get verts */
a = tri[ i ]->xyz;
b = tri[ ( i + 1 ) % 3 ]->xyz;
/* get dists */
dx = a[ 0 ] - b[ 0 ];
dy = a[ 1 ] - b[ 1 ];
dz = a[ 2 ] - b[ 2 ];
dist = ( dx * dx ) + ( dy * dy ) + ( dz * dz );
/* longer? */
if ( dist > maxDist ) {
maxDist = dist;
max = i;
}
}
/* is the triangle small enough? */
if ( max < 0 || maxDist <= ( model->density * model->density ) ) {
float odds, r, angle;
vec3_t origin, normal, scale, axis[ 3 ], angles;
m4x4_t transform, temp;
/* roll the dice (model's odds scaled by vertex alpha) */
odds = model->odds * ( tri[ 0 ]->color[ 0 ][ 3 ] + tri[ 0 ]->color[ 0 ][ 3 ] + tri[ 0 ]->color[ 0 ][ 3 ] ) / 765.0f;
r = Random();
if ( r > odds ) {
return 0;
}
/* calculate scale */
r = model->minScale + Random() * ( model->maxScale - model->minScale );
VectorSet( scale, r, r, r );
/* calculate angle */
angle = model->minAngle + Random() * ( model->maxAngle - model->minAngle );
/* calculate average origin */
VectorCopy( tri[ 0 ]->xyz, origin );
VectorAdd( origin, tri[ 1 ]->xyz, origin );
VectorAdd( origin, tri[ 2 ]->xyz, origin );
VectorScale( origin, ( 1.0f / 3.0f ), origin );
/* clear transform matrix */
m4x4_identity( transform );
/* handle oriented models */
if ( model->oriented ) {
/* set angles */
VectorSet( angles, 0.0f, 0.0f, angle );
/* calculate average normal */
VectorCopy( tri[ 0 ]->normal, normal );
VectorAdd( normal, tri[ 1 ]->normal, normal );
VectorAdd( normal, tri[ 2 ]->normal, normal );
if ( VectorNormalize( normal, axis[ 2 ] ) == 0.0f ) {
VectorCopy( tri[ 0 ]->normal, axis[ 2 ] );
}
/* make perpendicular vectors */
MakeNormalVectors( axis[ 2 ], axis[ 1 ], axis[ 0 ] );
/* copy to matrix */
m4x4_identity( temp );
temp[ 0 ] = axis[ 0 ][ 0 ]; temp[ 1 ] = axis[ 0 ][ 1 ]; temp[ 2 ] = axis[ 0 ][ 2 ];
temp[ 4 ] = axis[ 1 ][ 0 ]; temp[ 5 ] = axis[ 1 ][ 1 ]; temp[ 6 ] = axis[ 1 ][ 2 ];
temp[ 8 ] = axis[ 2 ][ 0 ]; temp[ 9 ] = axis[ 2 ][ 1 ]; temp[ 10 ] = axis[ 2 ][ 2 ];
/* scale */
m4x4_scale_by_vec3( temp, scale );
/* rotate around z axis */
m4x4_rotate_by_vec3( temp, angles, eXYZ );
/* translate */
m4x4_translate_by_vec3( transform, origin );
/* tranform into axis space */
m4x4_multiply_by_m4x4( transform, temp );
}
/* handle z-up models */
else
{
/* set angles */
VectorSet( angles, 0.0f, 0.0f, angle );
/* set matrix */
m4x4_pivoted_transform_by_vec3( transform, origin, angles, eXYZ, scale, vec3_origin );
}
/* insert the model */
InsertModel( (char *) model->model, 0, 0, transform, NULL, ds->celShader, ds->entityNum, ds->castShadows, ds->recvShadows, 0, ds->lightmapScale, 0, 0 );
/* return to sender */
return 1;
}
}
/* split the longest edge and map it */
LerpDrawVert( tri[ max ], tri[ ( max + 1 ) % 3 ], &mid );
/* recurse to first triangle */
VectorCopy( tri, tri2 );
tri2[ max ] = &mid;
n = AddSurfaceModelsToTriangle_r( ds, model, tri2 );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
/* recurse to second triangle */
VectorCopy( tri, tri2 );
tri2[ ( max + 1 ) % 3 ] = &mid;
n = AddSurfaceModelsToTriangle_r( ds, model, tri2 );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
/* return count */
return localNumSurfaceModels;
}
/*
AddSurfaceModels()
adds a surface's shader models to the surface
*/
int AddSurfaceModels( mapDrawSurface_t *ds ){
surfaceModel_t *model;
int i, x, y, n, pw[ 5 ], r, localNumSurfaceModels, iterations;
mesh_t src, *mesh, *subdivided;
bspDrawVert_t centroid, *tri[ 3 ];
float alpha;
/* dummy check */
if ( ds == NULL || ds->shaderInfo == NULL || ds->shaderInfo->surfaceModel == NULL ) {
return 0;
}
/* init */
localNumSurfaceModels = 0;
/* walk the model list */
for ( model = ds->shaderInfo->surfaceModel; model != NULL; model = model->next )
{
/* switch on type */
switch ( ds->type )
{
/* handle brush faces and decals */
case SURFACE_FACE:
case SURFACE_DECAL:
/* calculate centroid */
memset( &centroid, 0, sizeof( centroid ) );
alpha = 0.0f;
/* walk verts */
for ( i = 0; i < ds->numVerts; i++ )
{
VectorAdd( centroid.xyz, ds->verts[ i ].xyz, centroid.xyz );
VectorAdd( centroid.normal, ds->verts[ i ].normal, centroid.normal );
centroid.st[ 0 ] += ds->verts[ i ].st[ 0 ];
centroid.st[ 1 ] += ds->verts[ i ].st[ 1 ];
alpha += ds->verts[ i ].color[ 0 ][ 3 ];
}
/* average */
centroid.xyz[ 0 ] /= ds->numVerts;
centroid.xyz[ 1 ] /= ds->numVerts;
centroid.xyz[ 2 ] /= ds->numVerts;
if ( VectorNormalize( centroid.normal, centroid.normal ) == 0.0f ) {
VectorCopy( ds->verts[ 0 ].normal, centroid.normal );
}
centroid.st[ 0 ] /= ds->numVerts;
centroid.st[ 1 ] /= ds->numVerts;
alpha /= ds->numVerts;
centroid.color[ 0 ][ 0 ] = 0xFF;
centroid.color[ 0 ][ 1 ] = 0xFF;
centroid.color[ 0 ][ 2 ] = 0xFF;
centroid.color[ 0 ][ 2 ] = ( alpha > 255.0f ? 0xFF : alpha );
/* head vert is centroid */
tri[ 0 ] = &centroid;
/* walk fanned triangles */
for ( i = 0; i < ds->numVerts; i++ )
{
/* set triangle */
tri[ 1 ] = &ds->verts[ i ];
tri[ 2 ] = &ds->verts[ ( i + 1 ) % ds->numVerts ];
/* create models */
n = AddSurfaceModelsToTriangle_r( ds, model, tri );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
}
break;
/* handle patches */
case SURFACE_PATCH:
/* subdivide the surface */
src.width = ds->patchWidth;
src.height = ds->patchHeight;
src.verts = ds->verts;
//% subdivided = SubdivideMesh( src, 8.0f, 512 );
iterations = IterationsForCurve( ds->longestCurve, patchSubdivisions );
subdivided = SubdivideMesh2( src, iterations );
/* fit it to the curve and remove colinear verts on rows/columns */
PutMeshOnCurve( *subdivided );
mesh = RemoveLinearMeshColumnsRows( subdivided );
FreeMesh( subdivided );
/* subdivide each quad to place the models */
for ( y = 0; y < ( mesh->height - 1 ); y++ )
{
for ( x = 0; x < ( mesh->width - 1 ); x++ )
{
/* set indexes */
pw[ 0 ] = x + ( y * mesh->width );
pw[ 1 ] = x + ( ( y + 1 ) * mesh->width );
pw[ 2 ] = x + 1 + ( ( y + 1 ) * mesh->width );
pw[ 3 ] = x + 1 + ( y * mesh->width );
pw[ 4 ] = x + ( y * mesh->width ); /* same as pw[ 0 ] */
/* set radix */
r = ( x + y ) & 1;
/* triangle 1 */
tri[ 0 ] = &mesh->verts[ pw[ r + 0 ] ];
tri[ 1 ] = &mesh->verts[ pw[ r + 1 ] ];
tri[ 2 ] = &mesh->verts[ pw[ r + 2 ] ];
n = AddSurfaceModelsToTriangle_r( ds, model, tri );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
/* triangle 2 */
tri[ 0 ] = &mesh->verts[ pw[ r + 0 ] ];
tri[ 1 ] = &mesh->verts[ pw[ r + 2 ] ];
tri[ 2 ] = &mesh->verts[ pw[ r + 3 ] ];
n = AddSurfaceModelsToTriangle_r( ds, model, tri );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
}
}
/* free the subdivided mesh */
FreeMesh( mesh );
break;
/* handle triangle surfaces */
case SURFACE_TRIANGLES:
case SURFACE_FORCED_META:
case SURFACE_META:
/* walk the triangle list */
for ( i = 0; i < ds->numIndexes; i += 3 )
{
tri[ 0 ] = &ds->verts[ ds->indexes[ i ] ];
tri[ 1 ] = &ds->verts[ ds->indexes[ i + 1 ] ];
tri[ 2 ] = &ds->verts[ ds->indexes[ i + 2 ] ];
n = AddSurfaceModelsToTriangle_r( ds, model, tri );
if ( n < 0 ) {
return n;
}
localNumSurfaceModels += n;
}
break;
/* no support for foghull, etc */
default:
break;
}
}
/* return count */
return localNumSurfaceModels;
}
/*
AddEntitySurfaceModels() - ydnar
adds surfacemodels to an entity's surfaces
*/
void AddEntitySurfaceModels( entity_t *e ){
int i;
/* note it */
Sys_FPrintf( SYS_VRB, "--- AddEntitySurfaceModels ---\n" );
/* walk the surface list */
for ( i = e->firstDrawSurf; i < numMapDrawSurfs; i++ )
numSurfaceModels += AddSurfaceModels( &mapDrawSurfs[ i ] );
}
/*
VolumeColorMods() - ydnar
applies brush/volumetric color/alpha modulation to vertexes
*/
static void VolumeColorMods( entity_t *e, mapDrawSurface_t *ds ){
int i, j;
float d;
brush_t *b;
plane_t *plane;
/* early out */
if ( e->colorModBrushes == NULL ) {
return;
}
/* iterate brushes */
for ( b = e->colorModBrushes; b != NULL; b = b->nextColorModBrush )
{
/* worldspawn alpha brushes affect all, grouped ones only affect original entity */
if ( b->entityNum != 0 && b->entityNum != ds->entityNum ) {
continue;
}
/* test bbox */
if ( b->mins[ 0 ] > ds->maxs[ 0 ] || b->maxs[ 0 ] < ds->mins[ 0 ] ||
b->mins[ 1 ] > ds->maxs[ 1 ] || b->maxs[ 1 ] < ds->mins[ 1 ] ||
b->mins[ 2 ] > ds->maxs[ 2 ] || b->maxs[ 2 ] < ds->mins[ 2 ] ) {
continue;
}
/* iterate verts */
for ( i = 0; i < ds->numVerts; i++ )
{
/* iterate planes */
for ( j = 0; j < b->numsides; j++ )
{
/* point-plane test */
plane = &mapplanes[ b->sides[ j ].planenum ];
d = DotProduct( ds->verts[ i ].xyz, plane->normal ) - plane->dist;
if ( d > 1.0f ) {
break;
}
}
/* apply colormods */
if ( j == b->numsides ) {
ColorMod( b->contentShader->colorMod, 1, &ds->verts[ i ] );
}
}
}
}
/*
FilterDrawsurfsIntoTree()
upon completion, all drawsurfs that actually generate a reference
will have been emited to the bspfile arrays, and the references
will have valid final indexes
*/
void FilterDrawsurfsIntoTree( entity_t *e, tree_t *tree ){
int i, j;
mapDrawSurface_t *ds;
shaderInfo_t *si;
vec3_t origin, mins, maxs;
int refs;
int numSurfs, numRefs, numSkyboxSurfaces;
qboolean sb;
/* note it */
Sys_FPrintf( SYS_VRB, "--- FilterDrawsurfsIntoTree ---\n" );
/* filter surfaces into the tree */
numSurfs = 0;
numRefs = 0;
numSkyboxSurfaces = 0;
for ( i = e->firstDrawSurf; i < numMapDrawSurfs; i++ )
{
/* get surface and try to early out */
ds = &mapDrawSurfs[ i ];
if ( ds->numVerts == 0 && ds->type != SURFACE_FLARE && ds->type != SURFACE_SHADER ) {
continue;
}
/* get shader */
si = ds->shaderInfo;
/* ydnar: skybox surfaces are special */
if ( ds->skybox ) {
refs = AddReferenceToTree_r( ds, tree->headnode, qtrue );
ds->skybox = qfalse;
sb = qtrue;
}
else
{
sb = qfalse;
/* refs initially zero */
refs = 0;
/* apply texture coordinate mods */
for ( j = 0; j < ds->numVerts; j++ )
TCMod( si->mod, ds->verts[ j ].st );
/* ydnar: apply shader colormod */
ColorMod( ds->shaderInfo->colorMod, ds->numVerts, ds->verts );
/* ydnar: apply brush colormod */
VolumeColorMods( e, ds );
/* ydnar: make fur surfaces */
if ( si->furNumLayers > 0 ) {
Fur( ds );
}
/* ydnar/sd: make foliage surfaces */
if ( si->foliage != NULL ) {
Foliage( ds );
}
/* ydnar: don't emit nodraw surfaces (like nodraw fog) */
if ( ( si->compileFlags & C_NODRAW ) && ds->type != SURFACE_PATCH ) {
continue;
}
/* ydnar: bias the surface textures */
BiasSurfaceTextures( ds );
/* find surface origin and offset by entity origin */
//VectorAdd( ds->mins, ds->maxs, origin );
//VectorScale( origin, 0.5f, origin );
//VectorAdd( origin, e->origin, origin );
VectorAdd( ds->mins, e->origin, mins );
VectorAdd( ds->maxs, e->origin, maxs );
ds->cubemapNum = CubemapForBounds (mins, maxs);
/* ydnar: globalizing of fog volume handling (eek a hack) */
if ( e != entities && si->noFog == qfalse ) {
/* set the fog number for this surface */
ds->fogNum = FogForBounds( mins, maxs, 1.0f ); //% FogForPoint( origin, 0.0f );
}
}
/* ydnar: remap shader */
if ( ds->shaderInfo->remapShader && ds->shaderInfo->remapShader[ 0 ] ) {
int surfaceflags = ds->shaderInfo->surfaceFlags;
ds->shaderInfo = ShaderInfoForShader( ds->shaderInfo->remapShader, 1 );
ds->shaderInfo->surfaceFlags = surfaceflags;
ds->shaderInfo->remapped = qtrue;
}
/* ydnar: gs mods: handle the various types of surfaces */
switch ( ds->type )
{
/* handle brush faces */
case SURFACE_FACE:
case SURFACE_DECAL:
if ( refs == 0 ) {
refs = FilterFaceIntoTree( ds, tree );
}
if ( refs > 0 ) {
EmitFaceSurface( ds );
}
break;
/* handle patches */
case SURFACE_PATCH:
if ( refs == 0 ) {
refs = FilterPatchIntoTree( ds, tree );
}
if ( refs > 0 ) {
EmitPatchSurface( e, ds );
}
break;
/* handle triangle surfaces */
case SURFACE_TRIANGLES:
case SURFACE_FORCED_META:
case SURFACE_META:
//% Sys_FPrintf( SYS_VRB, "Surface %4d: [%1d] %4d verts %s\n", numSurfs, ds->planar, ds->numVerts, si->shader );
if ( refs == 0 ) {
refs = FilterTrianglesIntoTree( ds, tree );
}
if ( refs > 0 ) {
EmitTriangleSurface( ds );
}
break;
/* handle foliage surfaces (splash damage/wolf et) */
case SURFACE_FOLIAGE:
//% Sys_FPrintf( SYS_VRB, "Surface %4d: [%d] %4d verts %s\n", numSurfs, ds->numFoliageInstances, ds->numVerts, si->shader );
if ( refs == 0 ) {
refs = FilterFoliageIntoTree( ds, tree );
}
if ( refs > 0 ) {
EmitTriangleSurface( ds );
}
break;
/* handle foghull surfaces */
case SURFACE_FOGHULL:
if ( refs == 0 ) {
refs = AddReferenceToTree_r( ds, tree->headnode, qfalse );
}
if ( refs > 0 ) {
EmitTriangleSurface( ds );
}
break;
/* handle shader-only surfaces */
case SURFACE_SHADER:
refs = 1;
EmitSurface( ds );
break;
/* no references */
default:
refs = 0;
break;
}
/* maybe surface got marked as skybox again */
/* if we keep that flag, it will get scaled up AGAIN */
if ( sb ) {
ds->skybox = qfalse;
}
/* tot up the references */
if ( refs > 0 ) {
/* tot up counts */
numSurfs++;
numRefs += refs;
/* emit extra surface data */
SetSurfaceExtra( ds, numBSPDrawSurfaces - 1 );
//% Sys_FPrintf( SYS_VRB, "%d verts %d indexes\n", ds->numVerts, ds->numIndexes );
/* one last sanity check */
{
bspDrawSurface_t *out;
out = &bspDrawSurfaces[ numBSPDrawSurfaces - 1 ];
if ( out->numVerts == 3 && out->numIndexes > 3 ) {
Sys_FPrintf( SYS_WRN, "WARNING: Potentially bad %s surface (%d: %d, %d)\n %s\n",
surfaceTypes[ ds->type ],
numBSPDrawSurfaces - 1, out->numVerts, out->numIndexes, si->shader );
}
}
/* ydnar: handle skybox surfaces */
if ( ds->skybox ) {
MakeSkyboxSurface( ds );
numSkyboxSurfaces++;
}
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d references\n", numRefs );
Sys_FPrintf( SYS_VRB, "%9d (%d) emitted drawsurfs\n", numSurfs, numBSPDrawSurfaces );
Sys_FPrintf( SYS_VRB, "%9d stripped face surfaces\n", numStripSurfaces );
Sys_FPrintf( SYS_VRB, "%9d fanned face surfaces\n", numFanSurfaces );
Sys_FPrintf( SYS_VRB, "%9d maxarea'd face surfaces\n", numMaxAreaSurfaces );
Sys_FPrintf( SYS_VRB, "%9d surface models generated\n", numSurfaceModels );
Sys_FPrintf( SYS_VRB, "%9d skybox surfaces generated\n", numSkyboxSurfaces );
for ( i = 0; i < NUM_SURFACE_TYPES; i++ )
Sys_FPrintf( SYS_VRB, "%9d %s surfaces\n", numSurfacesByType[ i ], surfaceTypes[ i ] );
Sys_FPrintf( SYS_VRB, "%9d redundant indexes supressed, saving %d Kbytes\n", numRedundantIndexes, ( numRedundantIndexes * 4 / 1024 ) );
}