#include "quakedef.h" #ifdef D3D11QUAKE #include "glquake.h" #include "gl_draw.h" #include "shader.h" #define COBJMACROS #include extern ID3D11Device *pD3DDev11; extern ID3D11DeviceContext *d3ddevctx; extern ID3D11DepthStencilView *fb_backdepthstencil; extern cvar_t r_shadow_realtime_world_lightmaps; extern cvar_t gl_overbright; extern cvar_t r_portalrecursion, r_wireframe; extern cvar_t r_polygonoffset_shadowmap_offset, r_polygonoffset_shadowmap_factor; void D3D11_TerminateShadowMap(void); void D3D11BE_BeginShadowmapFace(void); #ifdef _DEBUG #define d3dcheck(foo) do{HRESULT err = foo; if (FAILED(err)) Sys_Error("D3D11 reported error on backend line %i - error 0x%x\n", __LINE__, (unsigned int)err);} while(0) #else #define d3dcheck(foo) foo #endif #define MAX_TMUS 16 static void BE_RotateForEntity (const entity_t *e, const model_t *mod); void D3D11BE_SetupLightCBuffer(dlight_t *l, vec3_t colour); texid_t D3D11_GetShadowMap(int id); /*========================================== tables for deforms =====================================*/ #define frand() (rand()*(1.0/RAND_MAX)) #define FTABLE_SIZE 1024 #define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1))) #define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x))) #define R_FastSin(x) r_sintable[FTABLE_CLAMP(x)] static float r_sintable[FTABLE_SIZE]; static float r_triangletable[FTABLE_SIZE]; static float r_squaretable[FTABLE_SIZE]; static float r_sawtoothtable[FTABLE_SIZE]; static float r_inversesawtoothtable[FTABLE_SIZE]; static float *FTableForFunc ( unsigned int func ) { switch (func) { case SHADER_FUNC_SIN: return r_sintable; case SHADER_FUNC_TRIANGLE: return r_triangletable; case SHADER_FUNC_SQUARE: return r_squaretable; case SHADER_FUNC_SAWTOOTH: return r_sawtoothtable; case SHADER_FUNC_INVERSESAWTOOTH: return r_inversesawtoothtable; } //bad values allow us to crash (so I can debug em) return NULL; } static void FTable_Init(void) { unsigned int i; double t; for (i = 0; i < FTABLE_SIZE; i++) { t = (double)i / (double)FTABLE_SIZE; r_sintable[i] = sin(t * 2*M_PI); if (t < 0.25) r_triangletable[i] = t * 4.0; else if (t < 0.75) r_triangletable[i] = 2 - 4.0 * t; else r_triangletable[i] = (t - 0.75) * 4.0 - 1.0; if (t < 0.5) r_squaretable[i] = 1.0f; else r_squaretable[i] = -1.0f; r_sawtoothtable[i] = t; r_inversesawtoothtable[i] = 1.0 - t; } } typedef vec3_t mat3_t[3]; static mat3_t axisDefault={{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; static void Matrix3_Transpose (mat3_t in, mat3_t out) { out[0][0] = in[0][0]; out[1][1] = in[1][1]; out[2][2] = in[2][2]; out[0][1] = in[1][0]; out[0][2] = in[2][0]; out[1][0] = in[0][1]; out[1][2] = in[2][1]; out[2][0] = in[0][2]; out[2][1] = in[1][2]; } static void Matrix3_Multiply_Vec3 (const mat3_t a, const vec3_t b, vec3_t product) { product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2]; product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2]; product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2]; } static int Matrix3_Compare(const mat3_t in, const mat3_t out) { return !memcmp(in, out, sizeof(mat3_t)); } /*================================================*/ //global constant-buffer typedef struct { float m_view[16]; float m_projection[16]; vec3_t v_eyepos; float v_time; vec3_t e_light_ambient; float pad1; vec3_t e_light_dir; float pad2; vec3_t e_light_mul; float pad3; } dx11_cbuf_view_t; typedef struct { float l_cubematrix[16]; vec3_t l_lightposition; float padl1; vec3_t l_colour; float pad2; vec3_t l_lightcolourscale; float l_lightradius; vec4_t l_shadowmapproj; vec2_t l_shadowmapscale; vec2_t pad3; } dx11_cbuf_light_t; //entity-specific constant-buffer typedef struct { float m_model[16]; vec3_t e_eyepos; float e_time; vec3_t e_light_ambient; float pad1; vec3_t e_light_dir; float pad2; vec3_t e_light_mul; float pad3; vec4_t e_lmscale[4]; vec4_t e_uppercolour; vec4_t e_lowercolour; vec4_t e_colourmod; vec4_t e_glowmod; } dx11_cbuf_entity_t; //vertex attributes typedef struct { vecV_t coord; vec2_t tex; vec2_t lm; vec3_t ndir; vec3_t sdir; vec3_t tdir; byte_vec4_t colorsb; } dx11_vbovdata_t; enum { //pos1 is always used D3D_VDEC_COL4B = 1<<0, D3D_VDEC_ST0 = 1<<1, //base or tcgen/tcmod D3D_VDEC_ST1 = 1<<2, //lm or so // D3D_VDEC_ST2 = 1<<3, // D3D_VDEC_ST3 = 1<<4, D3D_VDEC_NORM = 1<<3, //normal+sdir+tdir // D3D_VDEC_SKEL = 1<<4, // D3D_VDEC_POS2 = 1<<5, D3D_VDEC_MAX = 1<<5, }; typedef struct blendstates_s { struct blendstates_s *next; ID3D11BlendState *val; unsigned int bits; } blendstates_t; /* typedef struct d3d11renderqueue_s { ID3D11SamplerState *cursamplerstate[MAX_TMUS]; ID3D11ShaderResourceView *pendingtextures[MAX_TMUS]; unsigned int shaderbits; ID3D11Buffer *stream_buffer[D3D11_BUFF_MAX]; unsigned int stream_stride[D3D11_BUFF_MAX]; unsigned int stream_offset[D3D11_BUFF_MAX]; } d3d11renderqueue_t; */ typedef struct { unsigned int inited; backendmode_t mode; unsigned int flags; float identitylighting; float curtime; const entity_t *curentity; const dlight_t *curdlight; vec3_t curdlight_colours; shader_t *curshader; shader_t *depthonly; texnums_t *curtexnums; int curvertdecl; unsigned int shaderbits; unsigned int curcull; float depthbias; float depthfactor; float m_model[16]; unsigned int lastpasscount; vbo_t *batchvbo; batch_t *curbatch; batch_t dummybatch; vec4_t lightshadowmapproj; vec2_t lightshadowmapscale; unsigned int curlmode; shader_t *shader_rtlight[LSHADER_MODES]; unsigned int texflags[MAX_TMUS]; unsigned int tmuflags[MAX_TMUS]; ID3D11SamplerState *cursamplerstate[MAX_TMUS]; ID3D11SamplerState *sampstate[SHADER_PASS_IMAGE_FLAGS_D3D11+1]; ID3D11DepthStencilState *depthstates[1u<<4]; //index, its fairly short. blendstates_t *blendstates; //list. this could get big. //pending buffer state ID3D11Buffer *stream_buffer[D3D11_BUFF_MAX]; unsigned int stream_stride[D3D11_BUFF_MAX]; unsigned int stream_offset[D3D11_BUFF_MAX]; qboolean stream_rgbaf; program_t *programfixedemu[4]; mesh_t **meshlist; unsigned int nummeshes; #define NUMECBUFFERS 8 ID3D11Buffer *lcbuffer; ID3D11Buffer *vcbuffer; ID3D11Buffer *ecbuffers[NUMECBUFFERS]; int ecbufferidx; unsigned int wbatch; unsigned int maxwbatches; batch_t *wbatches; qboolean textureschanged; ID3D11ShaderResourceView *pendingtextures[MAX_TMUS]; float depthrange; qboolean purgevertexstream; #define NUMVBUFFERS 3 ID3D11Buffer *vertexstream[NUMVBUFFERS]; int vertexstreamcycle; int vertexstreamoffset; qboolean purgeindexstream; #define NUMIBUFFERS 3 ID3D11Buffer *indexstream[NUMIBUFFERS]; int indexstreamcycle; int indexstreamoffset; texid_t currentrender; int numlivevbos; int numliveshadowbuffers; } d3d11backend_t; extern D3D_FEATURE_LEVEL d3dfeaturelevel; #define VERTEXSTREAMSIZE (1024*1024*2) //2mb = 1 PAE jumbo page #define DYNVBUFFSIZE 65536 #define DYNIBUFFSIZE 65536*3 static vecV_t tmpbuf[65536]; //max verts per mesh static d3d11backend_t shaderstate; extern int be_maxpasses; void D3D11_UpdateFiltering(image_t *imagelist, int filtermip[3], int filterpic[3], int mipcap[2], float anis) { D3D11_SAMPLER_DESC sampdesc; int flags; for (flags = 0; flags <= (SHADER_PASS_IMAGE_FLAGS_D3D11); flags++) { int *filter; sampdesc.Filter = 0; filter = (flags & SHADER_PASS_UIPIC)?filterpic:filtermip; if ((filter[2] && !(flags & SHADER_PASS_NEAREST)) || (flags & SHADER_PASS_LINEAR)) sampdesc.Filter |= D3D11_FILTER_TYPE_LINEAR< 1) sampdesc.Filter = D3D11_FILTER_ANISOTROPIC; if (flags & SHADER_PASS_DEPTHCMP) sampdesc.Filter |= D3D11_COMPARISON_FILTERING_BIT; if (flags & SHADER_PASS_DEPTHCMP) sampdesc.ComparisonFunc = D3D11_COMPARISON_LESS_EQUAL; else sampdesc.ComparisonFunc = D3D11_COMPARISON_NEVER; if (flags & SHADER_PASS_CLAMP) { sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP; sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP; sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP; } else { sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; } sampdesc.MipLODBias = 0.0f; sampdesc.MaxAnisotropy = bound(1, anis, 16); sampdesc.BorderColor[0] = 0; sampdesc.BorderColor[1] = 0; sampdesc.BorderColor[2] = 0; sampdesc.BorderColor[3] = 0; if (flags & SHADER_PASS_NOMIPMAP) { //only ever use the biggest mip if multiple are present sampdesc.MinLOD = 0; sampdesc.MaxLOD = 0; } else { sampdesc.MinLOD = mipcap[0]; sampdesc.MaxLOD = mipcap[1]; } if (d3dfeaturelevel < D3D_FEATURE_LEVEL_10_0) //9.* sucks sampdesc.MaxLOD = FLT_MAX; if (shaderstate.sampstate[flags]) ID3D11SamplerState_Release(shaderstate.sampstate[flags]); shaderstate.sampstate[flags] = NULL; //returns the same pointer for dupes, supposedly, so no need to check that ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &shaderstate.sampstate[flags]); } } static void BE_DestroyVariousStates(void) { blendstates_t *bs; int flags; int i; for (i = 0; i < MAX_TMUS/*shaderstate.lastpasscount*/; i++) { shaderstate.cursamplerstate[i] = NULL; } if (d3ddevctx && i) ID3D11DeviceContext_PSSetSamplers(d3ddevctx, 0, i, shaderstate.cursamplerstate); for (flags = 0; flags <= SHADER_PASS_IMAGE_FLAGS_D3D11; flags++) { if (shaderstate.sampstate[flags]) ID3D11SamplerState_Release(shaderstate.sampstate[flags]); shaderstate.sampstate[flags] = NULL; } if (d3ddevctx) ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, NULL, 0); for (i = 0; i < (1u<<4); i++) { if (shaderstate.depthstates[i]) ID3D11DepthStencilState_Release(shaderstate.depthstates[i]); shaderstate.depthstates[i] = NULL; } if (d3ddevctx) ID3D11DeviceContext_OMSetBlendState(d3ddevctx, NULL, NULL, 0xffffffff); //hopefully the caches inside shaders should get flushed too... while(shaderstate.blendstates) { bs = shaderstate.blendstates; shaderstate.blendstates = bs->next; if (bs->val) ID3D11BlendState_Release(bs->val); BZ_Free(bs); } for (i = 0; i < NUMIBUFFERS; i++) { if (shaderstate.indexstream[i]) ID3D11Buffer_Release(shaderstate.indexstream[i]); shaderstate.indexstream[i] = NULL; } for (i = 0; i < NUMVBUFFERS; i++) { if (shaderstate.vertexstream[i]) ID3D11Buffer_Release(shaderstate.vertexstream[i]); shaderstate.vertexstream[i] = NULL; } if (shaderstate.lcbuffer) ID3D11Buffer_Release(shaderstate.lcbuffer); shaderstate.lcbuffer = NULL; if (shaderstate.vcbuffer) ID3D11Buffer_Release(shaderstate.vcbuffer); shaderstate.vcbuffer = NULL; for (i = 0; i < NUMECBUFFERS; i++) { if (shaderstate.ecbuffers[i]) ID3D11Buffer_Release(shaderstate.ecbuffers[i]); shaderstate.ecbuffers[i] = NULL; } D3D11_DestroyTexture(shaderstate.currentrender); //make sure the device doesn't have any textures still referenced. for (i = 0; i < MAX_TMUS/*shaderstate.lastpasscount*/; i++) { shaderstate.pendingtextures[i] = NULL; } if (d3ddevctx && i) ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, i, shaderstate.pendingtextures); } static void BE_ApplyTMUState(unsigned int tu, unsigned int flags) { ID3D11SamplerState *nstate; flags = (flags & SHADER_PASS_IMAGE_FLAGS_D3D11); flags |= shaderstate.texflags[tu]; nstate = shaderstate.sampstate[flags]; if (nstate != shaderstate.cursamplerstate[tu]) { shaderstate.cursamplerstate[tu] = nstate; //fixme: is it significant to bulk-apply this later? ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &nstate); } /* if ((flags ^ shaderstate.tmuflags[tu]) & (SHADER_PASS_NEAREST|SHADER_PASS_CLAMP)) { D3D11_SAMPLER_DESC sampdesc; ID3D11SamplerState *sstate; shaderstate.tmuflags[tu] = flags; if (flags & SHADER_PASS_NEAREST) sampdesc.Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR; else sampdesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; if (flags & SHADER_PASS_CLAMP) { sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP; sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP; sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP; } else { sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; } sampdesc.MipLODBias = 0.0f; sampdesc.MaxAnisotropy = 1; sampdesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS; sampdesc.BorderColor[0] = 0; sampdesc.BorderColor[1] = 0; sampdesc.BorderColor[2] = 0; sampdesc.BorderColor[3] = 0; sampdesc.MinLOD = 0; sampdesc.MaxLOD = D3D11_FLOAT32_MAX; if (!FAILED(ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &sstate))) { ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &sstate); ID3D11SamplerState_Release(sstate); } } */ } static void *D3D11BE_GenerateBlendState(unsigned int bits) { D3D11_BLEND_DESC blend = {0}; ID3D11BlendState *newblendstate; blend.IndependentBlendEnable = FALSE; blend.AlphaToCoverageEnable = FALSE; //FIXME if (bits & SBITS_BLEND_BITS) { switch(bits & SBITS_SRCBLEND_BITS) { case SBITS_SRCBLEND_ZERO: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ZERO; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ZERO; break; case SBITS_SRCBLEND_ONE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; break; case SBITS_SRCBLEND_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_COLOR; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA; break; case SBITS_SRCBLEND_ONE_MINUS_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_COLOR; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break; case SBITS_SRCBLEND_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA; break; case SBITS_SRCBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break; case SBITS_SRCBLEND_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA; break; case SBITS_SRCBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_ALPHA; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break; case SBITS_SRCBLEND_ALPHA_SATURATE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA_SAT; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA_SAT; break; default: Sys_Error("Bad shader blend src\n"); return NULL; } switch(bits & SBITS_DSTBLEND_BITS) { case SBITS_DSTBLEND_ZERO: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; break; case SBITS_DSTBLEND_ONE: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ONE; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ONE; break; case SBITS_DSTBLEND_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; break; case SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break; case SBITS_DSTBLEND_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_DEST_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_DEST_ALPHA; break; case SBITS_DSTBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_DEST_ALPHA; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; break; case SBITS_DSTBLEND_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_COLOR; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; break; case SBITS_DSTBLEND_ONE_MINUS_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_COLOR; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; break; default: Sys_Error("Bad shader blend dst\n"); return NULL; } blend.RenderTarget[0].BlendEnable = TRUE; } else { blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; blend.RenderTarget[0].BlendEnable = FALSE; } blend.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD; blend.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD; if (bits&SBITS_MASK_BITS) { blend.RenderTarget[0].RenderTargetWriteMask = 0; if (!(bits&SBITS_MASK_RED)) blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_RED; if (!(bits&SBITS_MASK_GREEN)) blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_GREEN; if (!(bits&SBITS_MASK_BLUE)) blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_BLUE; if (!(bits&SBITS_MASK_ALPHA)) blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_ALPHA; } else blend.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL; if (!FAILED(ID3D11Device_CreateBlendState(pD3DDev11, &blend, &newblendstate))) return newblendstate; return NULL; } static void D3D11BE_ApplyShaderBits(unsigned int bits, void **blendstatecache) { unsigned int delta; if (shaderstate.flags & (BEF_FORCEADDITIVE|BEF_FORCETRANSPARENT|BEF_FORCENODEPTH|BEF_FORCEDEPTHTEST|BEF_FORCEDEPTHWRITE)) { blendstatecache = NULL; if (shaderstate.flags & BEF_FORCEADDITIVE) bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS)) | (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE); else if (shaderstate.flags & BEF_FORCETRANSPARENT) { if ((bits & SBITS_BLEND_BITS) == (SBITS_SRCBLEND_ONE|SBITS_DSTBLEND_ZERO) || !(bits & SBITS_BLEND_BITS)) /*if transparency is forced, clear alpha test bits*/ bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS)) | (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA); } if (shaderstate.flags & BEF_FORCENODEPTH) /*EF_NODEPTHTEST dp extension*/ bits |= SBITS_MISC_NODEPTHTEST; else { if (shaderstate.flags & BEF_FORCEDEPTHTEST) bits &= ~SBITS_MISC_NODEPTHTEST; if (shaderstate.flags & BEF_FORCEDEPTHWRITE) bits |= SBITS_MISC_DEPTHWRITE; } } delta = bits ^ shaderstate.shaderbits; if (!delta) return; shaderstate.shaderbits = bits; if (delta & (SBITS_BLEND_BITS|SBITS_MASK_BITS)) { int sbits = bits & (SBITS_BLEND_BITS|SBITS_MASK_BITS); if (blendstatecache && *blendstatecache) ID3D11DeviceContext_OMSetBlendState(d3ddevctx, *blendstatecache, NULL, 0xffffffff); else { blendstates_t *bs; for (bs = shaderstate.blendstates; bs; bs = bs->next) { if (bs->bits == sbits) break; } if (!bs) { bs = BZ_Malloc(sizeof(*bs)); bs->next = shaderstate.blendstates; shaderstate.blendstates = bs; bs->bits = sbits; bs->val = D3D11BE_GenerateBlendState(sbits); } ID3D11DeviceContext_OMSetBlendState(d3ddevctx, bs->val, NULL, 0xffffffff); if (blendstatecache) *blendstatecache = bs->val; } } if (delta & SBITS_ATEST_BITS) { /* switch(bits & SBITS_ATEST_BITS) { case SBITS_ATEST_NONE: IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, FALSE); // IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0); // IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, 0); break; case SBITS_ATEST_GT0: IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATER); break; case SBITS_ATEST_LT128: IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_LESS); break; case SBITS_ATEST_GE128: IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL); break; } */ } if (delta & (SBITS_DEPTHFUNC_BITS|SBITS_MISC_NODEPTHTEST|SBITS_MISC_DEPTHWRITE)) { unsigned int key = (bits&(SBITS_DEPTHFUNC_BITS|SBITS_MISC_NODEPTHTEST|SBITS_MISC_DEPTHWRITE))>>16; if (shaderstate.depthstates[key]) ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, shaderstate.depthstates[key], 0); else { D3D11_DEPTH_STENCIL_DESC depthdesc; if (bits & SBITS_MISC_NODEPTHTEST) depthdesc.DepthEnable = false; else depthdesc.DepthEnable = true; if (bits & SBITS_MISC_DEPTHWRITE) depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; else depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; switch(bits & SBITS_DEPTHFUNC_BITS) { default: case SBITS_DEPTHFUNC_CLOSEREQUAL: depthdesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL; break; case SBITS_DEPTHFUNC_EQUAL: depthdesc.DepthFunc = D3D11_COMPARISON_EQUAL; break; case SBITS_DEPTHFUNC_CLOSER: depthdesc.DepthFunc = D3D11_COMPARISON_LESS; break; case SBITS_DEPTHFUNC_FURTHER: depthdesc.DepthFunc = D3D11_COMPARISON_GREATER; break; } //make sure the stencil part is actually valid, even if we're not using it. depthdesc.StencilEnable = false; depthdesc.StencilReadMask = 0xFF; depthdesc.StencilWriteMask = 0xFF; depthdesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthdesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP; depthdesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthdesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS; depthdesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP; depthdesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP; depthdesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP; depthdesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS; //and change it if (!FAILED(ID3D11Device_CreateDepthStencilState(pD3DDev11, &depthdesc, &shaderstate.depthstates[key]))) ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, shaderstate.depthstates[key], 0); } } } void D3D11BE_Reset(qboolean before) { int i; if (!shaderstate.inited) return; if (before) { /*backbuffer is going away, release stuff so it can be destroyed cleanly*/ } else { /*we have a new backbuffer etc, reassert state*/ for (i = 0; i < MAX_TMUS; i++) { shaderstate.tmuflags[i] = ~0; BE_ApplyTMUState(i, 0); } /*force all state to change, thus setting a known state*/ shaderstate.shaderbits = ~0; D3D11BE_ApplyShaderBits(0, NULL); } } static const char LIGHTPASS_SHADER[] = "\ {\n\ program rtlight\n\ {\n\ blendfunc add\n\ }\n\ }"; void D3D11BE_Init(void) { D3D11_BUFFER_DESC bd; int i; be_maxpasses = 1; memset(&shaderstate, 0, sizeof(shaderstate)); shaderstate.inited = true; shaderstate.curvertdecl = -1; for (i = 0; i < MAXRLIGHTMAPS; i++) shaderstate.dummybatch.lightmap[i] = -1; FTable_Init(); // BE_CreateSamplerStates(); // FTable_Init(); /* shaderstate.dynxyz_size = sizeof(vecV_t) * DYNVBUFFSIZE; shaderstate.dyncol_size = sizeof(byte_vec4_t) * DYNVBUFFSIZE; shaderstate.dynst_size = sizeof(vec2_t) * DYNVBUFFSIZE; shaderstate.dynidx_size = sizeof(index_t) * DYNIBUFFSIZE; */ D3D11BE_Reset(false); //set up the constant buffers for (i = 0; i < NUMECBUFFERS; i++) { bd.Usage = D3D11_USAGE_DYNAMIC; bd.ByteWidth = sizeof(dx11_cbuf_entity_t); bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; bd.MiscFlags = 0; bd.StructureByteStride = 0; if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.ecbuffers[i]))) return; } bd.Usage = D3D11_USAGE_DYNAMIC; bd.ByteWidth = sizeof(dx11_cbuf_view_t); bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; bd.MiscFlags = 0; bd.StructureByteStride = 0; if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vcbuffer))) return; bd.Usage = D3D11_USAGE_DYNAMIC; bd.ByteWidth = sizeof(dx11_cbuf_light_t); bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; bd.MiscFlags = 0; bd.StructureByteStride = 0; if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.lcbuffer))) return; //generate the streaming buffers for stuff that doesn't provide info in nice static vbos for (i = 0; i < NUMIBUFFERS; i++) { bd.BindFlags = D3D11_BIND_INDEX_BUFFER; bd.ByteWidth = VERTEXSTREAMSIZE; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; bd.MiscFlags = 0; bd.StructureByteStride = 0; bd.Usage = D3D11_USAGE_DYNAMIC; if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.indexstream[i]))) return; } for (i = 0; i < NUMVBUFFERS; i++) { bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; bd.ByteWidth = VERTEXSTREAMSIZE; bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; bd.MiscFlags = 0; bd.StructureByteStride = 0; bd.Usage = D3D11_USAGE_DYNAMIC; if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vertexstream[i]))) return; } /* for (i = 0; i < LSHADER_MODES; i++) { if ((i & LSHADER_CUBE) && (i & LSHADER_SPOT)) continue; shaderstate.shader_rtlight[i] = R_RegisterShader(va("rtlight%s%s%s", (i & LSHADER_SMAP)?"#PCF":"", (i & LSHADER_SPOT)?"#SPOT":"", (i & LSHADER_CUBE)?"#CUBE":"") , SUF_NONE, LIGHTPASS_SHADER); } */ // shaderstate.shader_rtlight = R_RegisterShader("rtlight", SUF_NONE, LIGHTPASS_SHADER); shaderstate.depthonly = R_RegisterShader("depthonly", SUF_NONE, "{\n" "program depthonly\n" "{\n" "depthwrite\n" "maskcolor\n" "}\n" "}\n"); R_InitFlashblends(); } void D3D11BE_Shutdown(void) { unsigned int i; shaderstate.inited = false; #ifdef RTLIGHTS D3D11_TerminateShadowMap(); #endif BE_DestroyVariousStates(); Z_Free(shaderstate.wbatches); shaderstate.wbatches = NULL; for (i = 0; i < countof(shaderstate.programfixedemu); i++) Shader_ReleaseGeneric(shaderstate.programfixedemu[i]); } static void allocvertexbuffer(ID3D11Buffer **buf, unsigned int *offset, void **dest, unsigned int sz) { D3D11_MAPPED_SUBRESOURCE msr; unsigned int maptype; sz = (sz+63)&~63; //try to align it to a cacheline. I assume the memory is write-through cached. if (shaderstate.purgevertexstream || shaderstate.vertexstreamoffset + sz > VERTEXSTREAMSIZE) { shaderstate.purgevertexstream = false; shaderstate.vertexstreamoffset = 0; maptype = D3D11_MAP_WRITE_DISCARD; shaderstate.vertexstreamcycle++; if (shaderstate.vertexstreamcycle == NUMVBUFFERS) shaderstate.vertexstreamcycle = 0; } else { maptype = D3D11_MAP_WRITE_NO_OVERWRITE; } *buf = shaderstate.vertexstream[shaderstate.vertexstreamcycle]; if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)*buf, 0, maptype, 0, &msr))) { *offset = 0; *buf = NULL; *dest = NULL; Con_Printf("allocvertexbuffer: failed to map vertex buffer\n"); return; } *dest = (index_t*)((qbyte*)msr.pData + shaderstate.vertexstreamoffset); *offset = shaderstate.vertexstreamoffset; shaderstate.vertexstreamoffset += sz; return; } static unsigned int allocindexbuffer(index_t **dest, ID3D11Buffer **buf, unsigned int entries) { D3D11_MAPPED_SUBRESOURCE msr; unsigned int sz = sizeof(index_t) * entries; unsigned int maptype; unsigned int ret; if (shaderstate.purgeindexstream || shaderstate.indexstreamoffset + sz > VERTEXSTREAMSIZE) { shaderstate.purgeindexstream = false; shaderstate.indexstreamoffset = 0; maptype = D3D11_MAP_WRITE_DISCARD; shaderstate.indexstreamcycle++; if (shaderstate.indexstreamcycle == NUMIBUFFERS) shaderstate.indexstreamcycle = 0; } else { maptype = D3D11_MAP_WRITE_NO_OVERWRITE; } *buf = shaderstate.indexstream[shaderstate.indexstreamcycle]; if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)*buf, 0, maptype, 0, &msr))) { *buf = NULL; *dest = NULL; Con_Printf("allocindexbuffer: failed to map index buffer\n"); return 0; } *dest = (index_t*)((qbyte*)msr.pData + shaderstate.indexstreamoffset); ret = shaderstate.indexstreamoffset; shaderstate.indexstreamoffset += sz; return ret; } ID3D11ShaderResourceView *D3D11_Image_View(const texid_t id); static void BindTexture(unsigned int tu, const texid_t id) { ID3D11ShaderResourceView *view = D3D11_Image_View(id); if (shaderstate.pendingtextures[tu] != view) { shaderstate.textureschanged = true; shaderstate.pendingtextures[tu] = view; if (id) shaderstate.texflags[tu] = id->flags&SHADER_PASS_IMAGE_FLAGS_D3D11; } } void D3D11BE_UnbindAllTextures(void) { int i; for (i = 0; i < shaderstate.lastpasscount; i++) shaderstate.pendingtextures[i] = NULL; if (i) { ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, i, shaderstate.pendingtextures); shaderstate.lastpasscount = 0; } } #define IID_ID3D11Texture2D gahzomgwtf static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a,0xb4,0x48,0x95,0x35,0xd3,0x4f,0x9c } }; static texid_t T_Gen_CurrentRender(void) { // int vwidth, vheight; // int pwidth = vid.fbpwidth; // int pheight = vid.fbpheight; ID3D11Texture2D *backbuf; #ifdef WINRT extern IDXGISwapChain1 *d3dswapchain; #else extern IDXGISwapChain *d3dswapchain; #endif D3D11_TEXTURE2D_DESC tdesc = {0}; if (r_refdef.recurse) return r_nulltex; //FIXME: should be willing to use the current rendertargets instead IDXGISwapChain_GetBuffer(d3dswapchain, 0, &IID_ID3D11Texture2D, (LPVOID*)&backbuf); ID3D11Texture2D_GetDesc(backbuf, &tdesc); // copy the scene to texture if (!TEXVALID(shaderstate.currentrender) || tdesc.Width != shaderstate.currentrender->width || tdesc.Height != shaderstate.currentrender->height) { if (!shaderstate.currentrender) shaderstate.currentrender = Image_CreateTexture("***$currentrender***", NULL, 0); if (shaderstate.currentrender) { shaderstate.currentrender->width = tdesc.Width; shaderstate.currentrender->height = tdesc.Height; tdesc.BindFlags = D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE; tdesc.CPUAccessFlags = 0; if (shaderstate.currentrender->ptr) ID3D11Texture2D_Release((ID3D11Texture2D*)shaderstate.currentrender->ptr); shaderstate.currentrender->ptr = NULL; ID3D11Device_CreateTexture2D(pD3DDev11, &tdesc, NULL, (ID3D11Texture2D**)&shaderstate.currentrender->ptr); } } ID3D11DeviceContext_CopyResource(d3ddevctx, (ID3D11Resource*)shaderstate.currentrender->ptr, (ID3D11Resource*)backbuf); if (shaderstate.currentrender->ptr2) ID3D11ShaderResourceView_Release((ID3D11ShaderResourceView*)shaderstate.currentrender->ptr2); shaderstate.currentrender->ptr2 = NULL; ID3D11Texture2D_Release(backbuf); return shaderstate.currentrender; } static void SelectPassTexture(unsigned int tu, const shaderpass_t *pass) { extern texid_t r_whiteimage, missing_texture_gloss, missing_texture_normal; switch(pass->texgen) { default: case T_GEN_DIFFUSE: BindTexture(tu, shaderstate.curtexnums->base); break; case T_GEN_NORMALMAP: if (TEXLOADED(shaderstate.curtexnums->bump)) BindTexture(tu, shaderstate.curtexnums->bump); else BindTexture(tu, missing_texture_normal); break; case T_GEN_SPECULAR: if (TEXLOADED(shaderstate.curtexnums->specular)) BindTexture(tu, shaderstate.curtexnums->specular); else BindTexture(tu, missing_texture_gloss); break; case T_GEN_UPPEROVERLAY: BindTexture(tu, shaderstate.curtexnums->upperoverlay); break; case T_GEN_LOWEROVERLAY: BindTexture(tu, shaderstate.curtexnums->loweroverlay); break; case T_GEN_FULLBRIGHT: BindTexture(tu, shaderstate.curtexnums->fullbright); break; case T_GEN_REFLECTCUBE: BindTexture(tu, shaderstate.curtexnums->reflectcube); break; case T_GEN_REFLECTMASK: BindTexture(tu, shaderstate.curtexnums->reflectmask); break; case T_GEN_ANIMMAP: BindTexture(tu, pass->anim_frames[(int)(pass->anim_fps * shaderstate.curtime) % pass->anim_numframes]); break; case T_GEN_3DMAP: case T_GEN_CUBEMAP: case T_GEN_SINGLEMAP: BindTexture(tu, pass->anim_frames[0]); break; case T_GEN_DELUXMAP: { int lmi = shaderstate.curbatch->lightmap[0]; if (lmi < 0 || !lightmap[lmi]->hasdeluxe) BindTexture(tu, r_nulltex); else { lmi+=1; BindTexture(tu, lightmap[lmi]->lightmap_texture); } } break; case T_GEN_LIGHTMAP: { int lmi = shaderstate.curbatch->lightmap[0]; if (lmi < 0) BindTexture(tu, r_whiteimage); else BindTexture(tu, lightmap[lmi]->lightmap_texture); } break; case T_GEN_CURRENTRENDER: BindTexture(tu, T_Gen_CurrentRender()); break; case T_GEN_VIDEOMAP: #ifdef HAVE_MEDIA_DECODER if (pass->cin) { BindTexture(tu, Media_UpdateForShader(pass->cin)); break; } #endif BindTexture(tu, r_nulltex); break; case T_GEN_LIGHTCUBEMAP: //light's projected cubemap if (shaderstate.curdlight) BindTexture(tu, shaderstate.curdlight->cubetexture); else BindTexture(tu, r_nulltex); break; case T_GEN_SHADOWMAP: //light's depth values. #ifdef RTLIGHTS if (shaderstate.curdlight) { BindTexture(tu, D3D11_GetShadowMap(shaderstate.curdlight->fov>0)); break; } #endif BindTexture(tu, r_nulltex); break; case T_GEN_SOURCECOLOUR: //used for render-to-texture targets case T_GEN_SOURCEDEPTH: //used for render-to-texture targets case T_GEN_REFLECTION: //reflection image (mirror-as-fbo) case T_GEN_REFRACTION: //refraction image (portal-as-fbo) case T_GEN_REFRACTIONDEPTH: //refraction image (portal-as-fbo) case T_GEN_RIPPLEMAP: //ripplemap image (water surface distortions-as-fbo) case T_GEN_SOURCECUBE: //used for render-to-texture targets BindTexture(tu, r_nulltex); break; } BE_ApplyTMUState(tu, pass->flags); //pass blend modes are skipped - they're really only useful for fixed function. we should just use blend modes instead. } static void colourgenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh) { #define D3DCOLOR unsigned int #define D3DCOLOR_ARGB(a,r,g,b) ((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff))) #define D3DCOLOR_COLORVALUE(r,g,b,a) D3DCOLOR_RGBA((DWORD)((r)*255.f),(DWORD)((g)*255.f),(DWORD)((b)*255.f),(DWORD)((a)*255.f)) #define D3DCOLOR_RGBA(r,g,b,a) D3DCOLOR_ARGB(a,r,g,b) D3DCOLOR block; switch (pass->rgbgen) { case RGB_GEN_ENTITY: block = D3DCOLOR_COLORVALUE(shaderstate.curentity->shaderRGBAf[0], shaderstate.curentity->shaderRGBAf[1], shaderstate.curentity->shaderRGBAf[2], shaderstate.curentity->shaderRGBAf[3]); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_ONE_MINUS_ENTITY: block = D3DCOLOR_COLORVALUE(1-shaderstate.curentity->shaderRGBAf[0], 1-shaderstate.curentity->shaderRGBAf[1], 1-shaderstate.curentity->shaderRGBAf[2], 1-shaderstate.curentity->shaderRGBAf[3]); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_VERTEX_LIGHTING: case RGB_GEN_VERTEX_EXACT: if (srcb) { while((cnt)--) { qbyte r, g, b; r=srcb[cnt][0]; g=srcb[cnt][1]; b=srcb[cnt][2]; dst[cnt][0] = b; dst[cnt][1] = g; dst[cnt][2] = r; } } else if (srcf) { while((cnt)--) { int r, g, b; r=srcf[cnt][0]*255; g=srcf[cnt][1]*255; b=srcf[cnt][2]*255; dst[cnt][0] = bound(0, b, 255); dst[cnt][1] = bound(0, g, 255); dst[cnt][2] = bound(0, r, 255); } } else goto identity; break; case RGB_GEN_ONE_MINUS_VERTEX: if (srcb) { while((cnt)--) { qbyte r, g, b; r=255-srcb[cnt][0]; g=255-srcb[cnt][1]; b=255-srcb[cnt][2]; dst[cnt][0] = b; dst[cnt][1] = g; dst[cnt][2] = r; } } else if (srcf) { while((cnt)--) { int r, g, b; r=255-srcf[cnt][0]*255; g=255-srcf[cnt][1]*255; b=255-srcf[cnt][2]*255; dst[cnt][0] = bound(0, b, 255); dst[cnt][1] = bound(0, g, 255); dst[cnt][2] = bound(0, r, 255); } } else goto identity; break; case RGB_GEN_IDENTITY_LIGHTING: //compensate for overbrights block = D3DCOLOR_RGBA(255, 255, 255, 255); //shaderstate.identitylighting while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; default: identity: case RGB_GEN_IDENTITY_OVERBRIGHT: case RGB_GEN_IDENTITY: block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_CONST: block = D3DCOLOR_COLORVALUE(pass->rgbgen_func.args[0], pass->rgbgen_func.args[1], pass->rgbgen_func.args[2], 1); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_LIGHTING_DIFFUSE: //collect lighting details for mobile entities if (!mesh->normals_array) { block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } } else { R_LightArraysByte_BGR(shaderstate.curentity , mesh->xyz_array, dst, cnt, mesh->normals_array, pass->rgbgen==RGB_GEN_ENTITY_LIGHTING_DIFFUSE); } break; case RGB_GEN_WAVE: { float *table; float c; table = FTableForFunc(pass->rgbgen_func.type); c = pass->rgbgen_func.args[2] + shaderstate.curtime * pass->rgbgen_func.args[3]; c = FTABLE_EVALUATE(table, c) * pass->rgbgen_func.args[1] + pass->rgbgen_func.args[0]; c = bound(0.0f, c, 1.0f); block = D3DCOLOR_COLORVALUE(c, c, c, 1); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } } break; case RGB_GEN_TOPCOLOR: case RGB_GEN_BOTTOMCOLOR: #ifdef warningmsg #pragma warningmsg("fix 24bit player colours") #endif block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } // Con_Printf("RGB_GEN %i not supported\n", pass->rgbgen); break; } } static void alphagenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh) { float *table; unsigned char t; float f; vec3_t v1, v2; switch (pass->alphagen) { default: case ALPHA_GEN_IDENTITY: if (shaderstate.flags & BEF_FORCETRANSPARENT) { f = shaderstate.curentity->shaderRGBAf[3]; if (f < 0) t = 0; else if (f >= 1) t = 255; else t = f*255; while(cnt--) dst[cnt][3] = t; } else { while(cnt--) dst[cnt][3] = 255; } break; case ALPHA_GEN_CONST: t = pass->alphagen_func.args[0]*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_WAVE: table = FTableForFunc(pass->alphagen_func.type); f = pass->alphagen_func.args[2] + shaderstate.curtime * pass->alphagen_func.args[3]; f = FTABLE_EVALUATE(table, f) * pass->alphagen_func.args[1] + pass->alphagen_func.args[0]; t = bound(0.0f, f, 1.0f)*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_PORTAL: //FIXME: should this be per-vert? VectorAdd(mesh->xyz_array[0], shaderstate.curentity->origin, v1); VectorSubtract(r_origin, v1, v2); f = VectorLength(v2) * (1.0 / 255.0); t = bound(0.0f, f, 1.0f)*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_VERTEX: if (srcb) { while(cnt--) { dst[cnt][3] = srcb[cnt][3]; } } else if (srcf) { while(cnt--) { dst[cnt][3] = bound(0, srcf[cnt][3]*255, 255); } } else { while(cnt--) { dst[cnt][3] = 255; } } break; case ALPHA_GEN_ENTITY: t = bound(0, shaderstate.curentity->shaderRGBAf[3], 1)*255; while(cnt--) { dst[cnt][3] = t; } break; case ALPHA_GEN_SPECULAR: { int i; VectorSubtract(r_origin, shaderstate.curentity->origin, v1); if (!Matrix3_Compare(shaderstate.curentity->axis, (void *)axisDefault)) { Matrix3_Multiply_Vec3(shaderstate.curentity->axis, v1, v2); } else { VectorCopy(v1, v2); } for (i = 0; i < cnt; i++) { VectorSubtract(v2, mesh->xyz_array[i], v1); f = DotProduct(v1, mesh->normals_array[i]) * Q_rsqrt(DotProduct(v1,v1)); f = f * f * f * f * f; dst[i][3] = bound (0, (int)(f*255), 255); } } break; } } //true if we used an array (flag to use uniforms for it instead if false) static void BE_GenerateColourMods(unsigned int vertcount, const shaderpass_t *pass) { const mesh_t *m = shaderstate.meshlist[0]; if (pass->flags & SHADER_PASS_NOCOLORARRAY) { #if 1 ID3D11Buffer *buf; unsigned char *map; unsigned int offset; byte_vec4_t passcolour; static byte_vec4_t fakesource = {0xff,0xff,0xff,0xff}; allocvertexbuffer(&buf, &offset, (void**)&map, sizeof(byte_vec4_t)); colourgenbyte(pass, 1, (byte_vec4_t*)&fakesource, NULL, (byte_vec4_t*)&passcolour, m); alphagenbyte(pass, 1, (byte_vec4_t*)&fakesource, NULL, (byte_vec4_t*)&passcolour, m); *(int*)map = *(int*)passcolour; ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_COL] = buf; shaderstate.stream_offset[D3D11_BUFF_COL] = offset; shaderstate.stream_stride[D3D11_BUFF_COL] = 0; //omg that's so lame! shaderstate.stream_rgbaf = false; #else ID3D11Buffer *buf; unsigned char *map; unsigned int offset; vec4_t passcolour; static vec4_t fakesource = {1,1,1,1}; allocvertexbuffer(&buf, &offset, (void**)&map, sizeof(fakesource)); colourgen(pass, 1, (vec4_t*)&fakesource, NULL, (vec4_t*)&passcolour, m); alphagen(pass, 1, (vec4_t*)&fakesource, NULL, (vec4_t*)&passcolour, m); Vector4Copy(passcolour, map); ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_COL] = buf; shaderstate.stream_offset[D3D11_BUFF_COL] = offset; shaderstate.stream_stride[D3D11_BUFF_COL] = 0; //omg that's so lame! shaderstate.stream_rgbaf = true; #endif } else { if (shaderstate.batchvbo && (m->colors4f_array[0] && ((pass->rgbgen == RGB_GEN_VERTEX_LIGHTING) || (pass->rgbgen == RGB_GEN_VERTEX_EXACT) || (pass->rgbgen == RGB_GEN_ONE_MINUS_VERTEX)) && (pass->alphagen == ALPHA_GEN_VERTEX))) { shaderstate.stream_buffer[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.buff; shaderstate.stream_offset[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.offs; shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(dx11_vbovdata_t); shaderstate.stream_rgbaf = false; } else { ID3D11Buffer *buf; byte_vec4_t *map; unsigned int mno; unsigned int offset; allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(byte_vec4_t)); for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; colourgenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array[0], map, m); alphagenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array[0], map, m); map += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_COL] = buf; shaderstate.stream_offset[D3D11_BUFF_COL] = offset; shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(byte_vec4_t); shaderstate.stream_rgbaf = false; } } } /*********************************************************************************************************/ /*========================================== texture coord generation =====================================*/ static void tcgen_environment(float *st, unsigned int numverts, float *xyz, float *normal) { int i; vec3_t viewer, reflected; float d; vec3_t rorg; RotateLightVector(shaderstate.curentity->axis, shaderstate.curentity->origin, r_origin, rorg); for (i = 0 ; i < numverts ; i++, xyz += sizeof(vecV_t)/sizeof(vec_t), normal += 3, st += 2 ) { VectorSubtract (rorg, xyz, viewer); VectorNormalizeFast (viewer); d = DotProduct (normal, viewer); reflected[0] = normal[0]*2*d - viewer[0]; reflected[1] = normal[1]*2*d - viewer[1]; reflected[2] = normal[2]*2*d - viewer[2]; st[0] = 0.5 + reflected[1] * 0.5; st[1] = 0.5 - reflected[2] * 0.5; } } static float *tcgen(const shaderpass_t *pass, int cnt, float *dst, const mesh_t *mesh) { int i; vecV_t *src; switch (pass->tcgen) { default: case TC_GEN_BASE: return (float*)mesh->st_array; case TC_GEN_LIGHTMAP: return (float*)mesh->lmst_array[0]; case TC_GEN_NORMAL: return (float*)mesh->normals_array; case TC_GEN_SVECTOR: return (float*)mesh->snormals_array; case TC_GEN_TVECTOR: return (float*)mesh->tnormals_array; case TC_GEN_ENVIRONMENT: tcgen_environment(dst, cnt, (float*)mesh->xyz_array, (float*)mesh->normals_array); return dst; case TC_GEN_DOTPRODUCT: return dst;//mesh->st_array[0]; case TC_GEN_VECTOR: src = mesh->xyz_array; for (i = 0; i < cnt; i++, dst += 2) { dst[0] = DotProduct(pass->tcgenvec[0], src[i]); dst[1] = DotProduct(pass->tcgenvec[1], src[i]); } return dst; } } /*src and dst can be the same address when tcmods are chained*/ static void tcmod(const tcmod_t *tcmod, int cnt, const float *src, float *dst, const mesh_t *mesh) { float *table; float t1, t2; float cost, sint; int j; switch (tcmod->type) { case SHADER_TCMOD_ROTATE: cost = tcmod->args[0] * shaderstate.curtime; sint = R_FastSin(cost); cost = R_FastSin(cost + 0.25); for (j = 0; j < cnt; j++, dst+=2,src+=2) { t1 = cost * (src[0] - 0.5f) - sint * (src[1] - 0.5f) + 0.5f; t2 = cost * (src[1] - 0.5f) + sint * (src[0] - 0.5f) + 0.5f; dst[0] = t1; dst[1] = t2; } break; case SHADER_TCMOD_SCALE: t1 = tcmod->args[0]; t2 = tcmod->args[1]; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] * t1; dst[1] = src[1] * t2; } break; case SHADER_TCMOD_TURB: t1 = tcmod->args[2] + shaderstate.curtime * tcmod->args[3]; t2 = tcmod->args[1]; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] + R_FastSin (src[0]*t2+t1) * t2; dst[1] = src[1] + R_FastSin (src[1]*t2+t1) * t2; } break; case SHADER_TCMOD_STRETCH: table = FTableForFunc(tcmod->args[0]); t2 = tcmod->args[3] + shaderstate.curtime * tcmod->args[4]; t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1]; t1 = t1 ? 1.0f / t1 : 1.0f; t2 = 0.5f - 0.5f * t1; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] * t1 + t2; dst[1] = src[1] * t1 + t2; } break; case SHADER_TCMOD_SCROLL: t1 = tcmod->args[0] * shaderstate.curtime; t2 = tcmod->args[1] * shaderstate.curtime; for (j = 0; j < cnt; j++, dst += 2, src+=2) { dst[0] = src[0] + t1; dst[1] = src[1] + t2; } break; case SHADER_TCMOD_TRANSFORM: for (j = 0; j < cnt; j++, dst+=2, src+=2) { t1 = src[0]; t2 = src[1]; dst[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4]; dst[1] = t1 * tcmod->args[1] + t2 * tcmod->args[3] + tcmod->args[5]; } break; default: break; } } static void BE_GenerateTCMods(const shaderpass_t *pass, float *dest) { mesh_t *mesh; unsigned int mno; int i; float *src; for (mno = 0; mno < shaderstate.nummeshes; mno++) { mesh = shaderstate.meshlist[mno]; src = tcgen(pass, mesh->numvertexes, dest, mesh); //tcgen might return unmodified info if (pass->numtcmods) { tcmod(&pass->tcmods[0], mesh->numvertexes, src, dest, mesh); for (i = 1; i < pass->numtcmods; i++) { tcmod(&pass->tcmods[i], mesh->numvertexes, dest, dest, mesh); } } else if (src != dest) { memcpy(dest, src, sizeof(vec2_t)*mesh->numvertexes); } dest += mesh->numvertexes*2; } } //end texture coords /*******************************************************************************************************************/ static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh) { float *table; int j, k; float args[4]; float deflect; switch (deformv->type) { default: case DEFORMV_NONE: if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); break; case DEFORMV_WAVE: if (!mesh->normals_array) { if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); return; } args[0] = deformv->func.args[0]; args[1] = deformv->func.args[1]; args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime; table = FTableForFunc(deformv->func.type); for ( j = 0; j < cnt; j++ ) { deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3]; deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0]; // Deflect vertex along its normal by wave amount VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]); } break; case DEFORMV_NORMAL: //normal does not actually move the verts, but it does change the normals array //we don't currently support that. if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); /* args[0] = deformv->args[1] * shaderstate.curtime; for ( j = 0; j < cnt; j++ ) { args[1] = normalsArray[j][2] * args[0]; deflect = deformv->args[0] * R_FastSin(args[1]); normalsArray[j][0] *= deflect; deflect = deformv->args[0] * R_FastSin(args[1] + 0.25); normalsArray[j][1] *= deflect; VectorNormalizeFast(normalsArray[j]); } */ break; case DEFORMV_MOVE: table = FTableForFunc(deformv->func.type); deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3]; deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0]; for ( j = 0; j < cnt; j++ ) VectorMA(src[j], deflect, deformv->args, dst[j]); break; case DEFORMV_BULGE: args[0] = deformv->args[0]/(2*M_PI); args[1] = deformv->args[1]; args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI); for (j = 0; j < cnt; j++) { deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1]; dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0]; dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1]; dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2]; } break; case DEFORMV_AUTOSPRITE: if (mesh->numindexes < 6) break; for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4) { vec3_t mid, d; float radius; mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]); mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]); mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]); VectorSubtract(src[0], mid, d); radius = 2*VectorLength(d); for (k = 0; k < 4; k++) { dst[k][0] = mid[0] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[0+1]); dst[k][1] = mid[1] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[4+1]); dst[k][2] = mid[2] + radius*((mesh->st_array[j+k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[j+k][1]-0.5)*r_refdef.m_view[8+1]); } } break; case DEFORMV_AUTOSPRITE2: if (mesh->numindexes < 6) break; for (k = 0; k < mesh->numindexes; k += 6) { int long_axis, short_axis; vec3_t axis; float len[3]; mat3_t m0, m1, m2, result; float *quad[4]; vec3_t rot_centre, tv, tv2; quad[0] = (float *)(src + mesh->indexes[k+0]); quad[1] = (float *)(src + mesh->indexes[k+1]); quad[2] = (float *)(src + mesh->indexes[k+2]); for (j = 2; j >= 0; j--) { quad[3] = (float *)(src + mesh->indexes[k+3+j]); if (!VectorEquals (quad[3], quad[0]) && !VectorEquals (quad[3], quad[1]) && !VectorEquals (quad[3], quad[2])) { break; } } // build a matrix were the longest axis of the billboard is the Y-Axis VectorSubtract(quad[1], quad[0], m0[0]); VectorSubtract(quad[2], quad[0], m0[1]); VectorSubtract(quad[2], quad[1], m0[2]); len[0] = DotProduct(m0[0], m0[0]); len[1] = DotProduct(m0[1], m0[1]); len[2] = DotProduct(m0[2], m0[2]); if ((len[2] > len[1]) && (len[2] > len[0])) { if (len[1] > len[0]) { long_axis = 1; short_axis = 0; } else { long_axis = 0; short_axis = 1; } } else if ((len[1] > len[2]) && (len[1] > len[0])) { if (len[2] > len[0]) { long_axis = 2; short_axis = 0; } else { long_axis = 0; short_axis = 2; } } else //if ( (len[0] > len[1]) && (len[0] > len[2]) ) { if (len[2] > len[1]) { long_axis = 2; short_axis = 1; } else { long_axis = 1; short_axis = 2; } } if (DotProduct(m0[long_axis], m0[short_axis])) { VectorNormalize2(m0[long_axis], axis); VectorCopy(axis, m0[1]); if (axis[0] || axis[1]) { VectorVectors(m0[1], m0[2], m0[0]); } else { VectorVectors(m0[1], m0[0], m0[2]); } } else { VectorNormalize2(m0[long_axis], axis); VectorNormalize2(m0[short_axis], m0[0]); VectorCopy(axis, m0[1]); CrossProduct(m0[0], m0[1], m0[2]); } for (j = 0; j < 3; j++) rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25; if (shaderstate.curentity) { VectorAdd(shaderstate.curentity->origin, rot_centre, tv); } else { VectorCopy(rot_centre, tv); } VectorSubtract(r_origin, tv, tv); // filter any longest-axis-parts off the camera-direction deflect = -DotProduct(tv, axis); VectorMA(tv, deflect, axis, m1[2]); VectorNormalizeFast(m1[2]); VectorCopy(axis, m1[1]); CrossProduct(m1[1], m1[2], m1[0]); Matrix3_Transpose(m1, m2); Matrix3_Multiply(m2, m0, result); for (j = 0; j < 4; j++) { int v = ((vecV_t*)quad[j]-src); VectorSubtract(quad[j], rot_centre, tv); Matrix3_Multiply_Vec3((void *)result, tv, tv2); VectorAdd(rot_centre, tv2, dst[v]); } } break; // case DEFORMV_PROJECTION_SHADOW: // break; } } static void BE_ApplyUniforms(program_t *prog, struct programpermu_s *permu) { ID3D11Buffer *cbuf[3] = { shaderstate.ecbuffers[shaderstate.ecbufferidx], //entity buffer shaderstate.vcbuffer, //view buffer that changes rarely shaderstate.lcbuffer //light buffer that changes rarelyish }; //FIXME: how many of these calls can we avoid? ID3D11DeviceContext_IASetInputLayout(d3ddevctx, permu->h.hlsl.layouts[shaderstate.stream_rgbaf]); ID3D11DeviceContext_VSSetShader(d3ddevctx, permu->h.hlsl.vert, NULL, 0); ID3D11DeviceContext_HSSetShader(d3ddevctx, permu->h.hlsl.hull, NULL, 0); ID3D11DeviceContext_DSSetShader(d3ddevctx, permu->h.hlsl.domain, NULL, 0); ID3D11DeviceContext_GSSetShader(d3ddevctx, permu->h.hlsl.geom, NULL, 0); ID3D11DeviceContext_PSSetShader(d3ddevctx, permu->h.hlsl.frag, NULL, 0); ID3D11DeviceContext_IASetPrimitiveTopology(d3ddevctx, permu->h.hlsl.topology); ID3D11DeviceContext_VSSetConstantBuffers(d3ddevctx, 0, 3, cbuf); if (permu->h.hlsl.hull) ID3D11DeviceContext_HSSetConstantBuffers(d3ddevctx, 0, 3, cbuf); if (permu->h.hlsl.domain) ID3D11DeviceContext_DSSetConstantBuffers(d3ddevctx, 0, 3, cbuf); if (permu->h.hlsl.geom) ID3D11DeviceContext_GSSetConstantBuffers(d3ddevctx, 0, 3, cbuf); ID3D11DeviceContext_PSSetConstantBuffers(d3ddevctx, 0, 3, cbuf); } static void BE_RenderMeshProgram(program_t *p, shaderpass_t *pass, unsigned int vertcount, unsigned int idxfirst, unsigned int idxcount) { int passno; int perm = 0; struct programpermu_s *pp; if (TEXLOADED(shaderstate.curtexnums->bump)) perm |= PERMUTATION_BUMPMAP; if (TEXLOADED(shaderstate.curtexnums->fullbright)) perm |= PERMUTATION_FULLBRIGHT; if ((TEXLOADED(shaderstate.curtexnums->upperoverlay) || TEXLOADED(shaderstate.curtexnums->loweroverlay))) perm |= PERMUTATION_UPPERLOWER; if (r_refdef.globalfog.density) perm |= PERMUTATION_FOG; // if (r_glsl_offsetmapping.ival && TEXLOADED(shaderstate.curtexnums->bump)) // perm |= PERMUTATION_OFFSET; perm &= p->supportedpermutations; pp = p->permu[perm]; if (!pp) { pp = Shader_LoadPermutation(p, perm); if (!pp) pp = p->permu[perm=0]; } BE_ApplyUniforms(p, pp); D3D11BE_ApplyShaderBits(pass->shaderbits, &pass->becache); /*activate tmus*/ for (passno = 0; passno < pass->numMergedPasses; passno++) { SelectPassTexture(passno, pass+passno); } /*deactivate any extras*/ for (; passno < shaderstate.lastpasscount; passno++) { shaderstate.pendingtextures[passno] = NULL; shaderstate.textureschanged = true; } if (shaderstate.textureschanged) ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, max(passno, pass->numMergedPasses), shaderstate.pendingtextures); shaderstate.lastpasscount = pass->numMergedPasses; ID3D11DeviceContext_DrawIndexed(d3ddevctx, idxcount, idxfirst, 0); RQuantAdd(RQUANT_DRAWS, 1); } static void D3D11BE_Cull(unsigned int cullflags, int depthbias, float depthfactor) { HRESULT hr; D3D11_RASTERIZER_DESC rasterdesc; ID3D11RasterizerState *newrasterizerstate; if (shaderstate.flags & BEF_FORCETWOSIDED) cullflags = 0; else if (cullflags) cullflags ^= r_refdef.flipcull; #define SHADER_CULL_WIREFRAME SHADER_NODRAW //borrow a flag... if (shaderstate.mode == BEM_WIREFRAME) cullflags |= SHADER_CULL_WIREFRAME; if (shaderstate.curcull != cullflags || shaderstate.depthbias != depthbias || shaderstate.depthfactor != depthfactor) { shaderstate.curcull = cullflags; shaderstate.depthbias = depthbias; shaderstate.depthfactor = depthfactor; rasterdesc.AntialiasedLineEnable = false; if (shaderstate.curcull & 1) { if (shaderstate.curcull & SHADER_CULL_FRONT) rasterdesc.CullMode = D3D11_CULL_FRONT; else if (shaderstate.curcull & SHADER_CULL_BACK) rasterdesc.CullMode = D3D11_CULL_BACK; else rasterdesc.CullMode = D3D11_CULL_NONE; } else { if (shaderstate.curcull & SHADER_CULL_FRONT) rasterdesc.CullMode = D3D11_CULL_BACK; else if (shaderstate.curcull & SHADER_CULL_BACK) rasterdesc.CullMode = D3D11_CULL_FRONT; else rasterdesc.CullMode = D3D11_CULL_NONE; } rasterdesc.DepthBias = shaderstate.depthbias; rasterdesc.SlopeScaledDepthBias = shaderstate.depthfactor; rasterdesc.DepthBiasClamp = 0.0f; rasterdesc.DepthClipEnable = true; rasterdesc.FillMode = (shaderstate.curcull&SHADER_CULL_WIREFRAME)?D3D11_FILL_WIREFRAME:D3D11_FILL_SOLID; rasterdesc.FrontCounterClockwise = false; rasterdesc.MultisampleEnable = false; rasterdesc.ScissorEnable = true; if (FAILED(hr=ID3D11Device_CreateRasterizerState(pD3DDev11, &rasterdesc, &newrasterizerstate))) { if (hr == DXGI_ERROR_DEVICE_REMOVED) { hr = ID3D11Device_GetDeviceRemovedReason(pD3DDev11); switch(hr) { case DXGI_ERROR_DEVICE_HUNG: Sys_Error("DXGI_ERROR_DEVICE_HUNG\nThe application's device failed due to badly formed commands sent by the application.\n"); break; case DXGI_ERROR_DEVICE_REMOVED: Sys_Error("DXGI_ERROR_DEVICE_REMOVED\nThe video card has been physically removed from the system, or a driver upgrade for the video card has occurred.\n"); break; case DXGI_ERROR_DEVICE_RESET: Sys_Error("DXGI_ERROR_DEVICE_RESET\nThe device failed due to a badly formed command.\n"); break; case DXGI_ERROR_DRIVER_INTERNAL_ERROR: Sys_Error("DXGI_ERROR_DRIVER_INTERNAL_ERROR\nThe driver encountered a problem and was put into the device removed state.\n"); break; case DXGI_ERROR_INVALID_CALL: Sys_Error("invalid call! oh noes!\n"); break; default: break; } } else Con_Printf("ID3D11Device_CreateRasterizerState failed\n"); return; } ID3D11DeviceContext_RSSetState(d3ddevctx, newrasterizerstate); ID3D11RasterizerState_Release(newrasterizerstate); } } static void BE_DrawMeshChain_Internal(void) { shader_t *altshader; unsigned int vertcount, idxcount, idxfirst; mesh_t *m; qboolean vblends; //software // void *map; // int i; unsigned int mno; unsigned int passno; // extern cvar_t r_polygonoffset_submodel_factor; // float pushdepth; // float pushfactor; altshader = shaderstate.curshader; switch (shaderstate.mode) { case BEM_LIGHT: altshader = shaderstate.shader_rtlight[shaderstate.curlmode]; break; case BEM_DEPTHONLY: altshader = shaderstate.curshader->bemoverrides[bemoverride_depthonly]; if (!altshader) altshader = shaderstate.depthonly; break; default: case BEM_STANDARD: altshader = shaderstate.curshader; break; case BEM_WIREFRAME: altshader = R_RegisterShader("wireframe", SUF_NONE, "{\n" "{\n" "map $whiteimage\n" "}\n" "}\n" ); break; } if (!altshader) return; if (0)//shaderstate.force2d) { RQuantAdd(RQUANT_2DBATCHES, 1); } else if (shaderstate.curentity == &r_worldentity) { RQuantAdd(RQUANT_WORLDBATCHES, 1); } else { RQuantAdd(RQUANT_ENTBATCHES, 1); } D3D11BE_Cull(shaderstate.curshader->flags & (SHADER_CULL_FRONT | SHADER_CULL_BACK), shaderstate.curshader->polyoffset.unit, shaderstate.curshader->polyoffset.factor); memset(shaderstate.stream_buffer, 0, sizeof(shaderstate.stream_buffer)); //if this flag is set, then we have to generate our own arrays. to avoid processing extra verticies this may require that we re-pack the verts if (shaderstate.meshlist[0]->xyz2_array)// && !altshader->prog) { vblends = true; shaderstate.batchvbo = NULL; } else { vblends = false; if (altshader->flags & SHADER_NEEDSARRAYS) shaderstate.batchvbo = NULL; } /*so are index buffers*/ if (shaderstate.batchvbo && shaderstate.nummeshes == 1) { m = shaderstate.meshlist[0]; ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, shaderstate.batchvbo->indicies.d3d.buff, DXGI_FORMAT_INDEX_UINT, shaderstate.batchvbo->indicies.d3d.offs); idxfirst = m->vbofirstelement; vertcount = m->vbofirstvert + m->numvertexes; idxcount = m->numindexes; } else if (shaderstate.batchvbo) { /*however, we still want to try to avoid discontinuities, because that would otherwise be more draw calls. we can have gaps in verts though*/ index_t *map; ID3D11Buffer *buf; unsigned int i; unsigned int byteofs; vertcount = shaderstate.batchvbo->vertcount; for (mno = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; idxcount += m->numindexes; } byteofs = allocindexbuffer(&map, &buf, idxcount); for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numindexes; i++) map[i] = m->indexes[i]+m->vbofirstvert; map += m->numindexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, buf, DXGI_FORMAT_INDEX_UINT, byteofs); idxfirst = 0; } else { /*we're going to be using dynamic array stuff here, so generate an index array list that has no vertex gaps*/ index_t *map; ID3D11Buffer *buf; unsigned int i; unsigned int byteofs; for (mno = 0, vertcount = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; vertcount += m->numvertexes; idxcount += m->numindexes; } byteofs = allocindexbuffer(&map, &buf, idxcount); for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numindexes; i++) map[i] = m->indexes[i]+vertcount; map += m->numindexes; vertcount += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, buf, DXGI_FORMAT_INDEX_UINT, byteofs); idxfirst = 0; } /*vertex buffers are common to all passes*/ if (shaderstate.batchvbo && !vblends) { shaderstate.stream_buffer[D3D11_BUFF_POS] = shaderstate.batchvbo->coord.d3d.buff; shaderstate.stream_offset[D3D11_BUFF_POS] = shaderstate.batchvbo->coord.d3d.offs; shaderstate.stream_stride[D3D11_BUFF_POS] = sizeof(dx11_vbovdata_t); } else { ID3D11Buffer *buf; vecV_t *map; const mesh_t *m; unsigned int mno; unsigned int offset, i; allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vecV_t)); if (vblends) { for (mno = 0; mno < shaderstate.nummeshes; mno++) { const mesh_t *m = shaderstate.meshlist[mno]; vecV_t *ov = shaderstate.curshader->numdeforms?tmpbuf:map; vecV_t *iv1 = m->xyz_array; vecV_t *iv2 = m->xyz2_array; float w1 = m->xyz_blendw[0]; float w2 = m->xyz_blendw[1]; for (i = 0; i < m->numvertexes; i++) { ov[i][0] = iv1[i][0]*w1 + iv2[i][0]*w2; ov[i][1] = iv1[i][1]*w1 + iv2[i][1]*w2; ov[i][2] = iv1[i][2]*w1 + iv2[i][2]*w2; } if (shaderstate.curshader->numdeforms) { for (i = 0; i < shaderstate.curshader->numdeforms-1; i++) deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, tmpbuf, m); deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, (vecV_t*)map, m); } map += m->numvertexes; } } else if (shaderstate.curshader->numdeforms > 1) { //horrible code, because multiple deforms would otherwise READ from the gpu memory for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, tmpbuf, m); for (i = 1; i < shaderstate.curshader->numdeforms-1; i++) deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, tmpbuf, m); deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, tmpbuf, (vecV_t*)map, m); map += m->numvertexes; } } else { for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, (vecV_t*)map, m); map += m->numvertexes; } } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_POS] = buf; shaderstate.stream_offset[D3D11_BUFF_POS] = offset; shaderstate.stream_stride[D3D11_BUFF_POS] = sizeof(vecV_t); } if (altshader->prog) { if (shaderstate.batchvbo) { shaderstate.stream_buffer[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.buff; shaderstate.stream_offset[D3D11_BUFF_COL] = shaderstate.batchvbo->colours[0].d3d.offs; shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(dx11_vbovdata_t); shaderstate.stream_rgbaf = false; shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.buff; shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.offs; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t); shaderstate.stream_buffer[D3D11_BUFF_LMTC] = shaderstate.batchvbo->lmcoord[0].d3d.buff; shaderstate.stream_offset[D3D11_BUFF_LMTC] = shaderstate.batchvbo->lmcoord[0].d3d.offs; shaderstate.stream_stride[D3D11_BUFF_LMTC] = sizeof(dx11_vbovdata_t); shaderstate.stream_buffer[D3D11_BUFF_NORM] = shaderstate.batchvbo->normals.d3d.buff; shaderstate.stream_offset[D3D11_BUFF_NORM] = shaderstate.batchvbo->normals.d3d.offs; shaderstate.stream_stride[D3D11_BUFF_NORM] = sizeof(dx11_vbovdata_t); } else { ID3D11Buffer *buf; vec2_t *map; vec2_t *lmmap; const mesh_t *m; unsigned int mno; unsigned int offset, i; if (shaderstate.meshlist[0]->colors4f_array[0]) { vec4_t *map; allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(*map)); for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; memcpy(map, m->colors4f_array[0], sizeof(*map)*m->numvertexes); map += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_COL] = buf; shaderstate.stream_offset[D3D11_BUFF_COL] = offset; shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(*map); shaderstate.stream_rgbaf = true; } else if (shaderstate.meshlist[0]->colors4b_array) { byte_vec4_t *map; allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(byte_vec4_t)); for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numvertexes; i++) memcpy(map, m->colors4b_array, vertcount*sizeof(byte_vec4_t)); map += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_COL] = buf; shaderstate.stream_offset[D3D11_BUFF_COL] = offset; shaderstate.stream_stride[D3D11_BUFF_COL] = sizeof(byte_vec4_t); shaderstate.stream_rgbaf = false; } else { shaderstate.stream_buffer[D3D11_BUFF_COL] = 0; shaderstate.stream_offset[D3D11_BUFF_COL] = 0; shaderstate.stream_stride[D3D11_BUFF_COL] = 0; shaderstate.stream_rgbaf = false; } if (shaderstate.meshlist[0]->lmst_array[0]) { allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec4_t)); lmmap = map + vertcount; for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numvertexes; i++) { map[i][0] = m->st_array[i][0]; map[i][1] = m->st_array[i][1]; lmmap[i][0] = m->lmst_array[0][i][0]; lmmap[i][1] = m->lmst_array[0][i][1]; } map += m->numvertexes; lmmap += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_TC] = buf; shaderstate.stream_offset[D3D11_BUFF_TC] = offset; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t); shaderstate.stream_buffer[D3D11_BUFF_LMTC] = buf; shaderstate.stream_offset[D3D11_BUFF_LMTC] = offset+vertcount*sizeof(vec2_t); shaderstate.stream_stride[D3D11_BUFF_LMTC] = sizeof(vec2_t); } else { allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec2_t)); for (mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numvertexes; i++) { map[i][0] = m->st_array[i][0]; map[i][1] = m->st_array[i][1]; } map += m->numvertexes; } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_TC] = buf; shaderstate.stream_offset[D3D11_BUFF_TC] = offset; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t); shaderstate.stream_buffer[D3D11_BUFF_LMTC] = NULL; shaderstate.stream_offset[D3D11_BUFF_LMTC] = 0; shaderstate.stream_stride[D3D11_BUFF_LMTC] = 0; } } ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, D3D11_BUFF_MAX, (ID3D11Buffer**)shaderstate.stream_buffer, shaderstate.stream_stride, shaderstate.stream_offset); BE_RenderMeshProgram(altshader->prog, altshader->passes, vertcount, idxfirst, idxcount); } else if (1) { shaderpass_t *p; //d3d11 has no fixed function pipeline. we emulate it. for (passno = 0; passno < altshader->numpasses; passno += p->numMergedPasses) { int emumode; p = &altshader->passes[passno]; emumode = 0; emumode = (p->shaderbits & SBITS_ATEST_BITS) >> SBITS_ATEST_SHIFT; BE_GenerateColourMods(vertcount, p); if (shaderstate.batchvbo) { //texcoords are all compatible with static arrays, supposedly if (p->tcgen == TC_GEN_LIGHTMAP) { shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->lmcoord[0].d3d.buff; shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->lmcoord[0].d3d.offs; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t); } else if (p->tcgen == TC_GEN_BASE) { shaderstate.stream_buffer[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.buff; shaderstate.stream_offset[D3D11_BUFF_TC] = shaderstate.batchvbo->texcoord.d3d.offs; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(dx11_vbovdata_t); } else { Con_Printf("should be unreachable\n"); } } else { ID3D11Buffer *buf; float *map; unsigned int offset; allocvertexbuffer(&buf, &offset, (void**)&map, vertcount*sizeof(vec2_t)); BE_GenerateTCMods(p, map); ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)buf, 0); shaderstate.stream_buffer[D3D11_BUFF_TC] = buf; shaderstate.stream_offset[D3D11_BUFF_TC] = offset; shaderstate.stream_stride[D3D11_BUFF_TC] = sizeof(vec2_t); } if (!shaderstate.programfixedemu[emumode]) { char *modes[] = { "","#ALPHATEST=>0.0","#ALPHATEST=<0.5","#ALPHATEST=>=0.5" }; shaderstate.programfixedemu[emumode] = Shader_FindGeneric(va("fixedemu%s", modes[emumode]), QR_DIRECT3D11); if (!shaderstate.programfixedemu[emumode]) break; } ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, D3D11_BUFF_MAX, (ID3D11Buffer**)shaderstate.stream_buffer, shaderstate.stream_stride, shaderstate.stream_offset); BE_RenderMeshProgram(shaderstate.programfixedemu[emumode], p, vertcount, idxfirst, idxcount); } } } void D3D11BE_SelectMode(backendmode_t mode) { shaderstate.mode = mode; if (mode == BEM_STENCIL) D3D11BE_ApplyShaderBits(SBITS_MASK_BITS, NULL); } qboolean D3D11BE_GenerateRTLightShader(unsigned int lmode) { if (!shaderstate.shader_rtlight[lmode]) { shaderstate.shader_rtlight[lmode] = R_RegisterShader(va("rtlight%s%s%s", (lmode & LSHADER_SMAP)?"#PCF":"", (lmode & LSHADER_SPOT)?"#SPOT":"", (lmode & LSHADER_CUBE)?"#CUBE":"") , SUF_NONE, LIGHTPASS_SHADER); } if (!shaderstate.shader_rtlight[lmode]->prog) return false; return true; } qboolean D3D11BE_SelectDLight(dlight_t *dl, vec3_t colour, vec3_t axis[3], unsigned int lmode) { if (!D3D11BE_GenerateRTLightShader(lmode)) { lmode &= ~(LSHADER_SMAP|LSHADER_CUBE); if (!D3D11BE_GenerateRTLightShader(lmode)) return false; } shaderstate.curdlight = dl; shaderstate.curlmode = lmode; VectorCopy(colour, shaderstate.curdlight_colours); D3D11BE_SetupLightCBuffer(dl, colour); return true; } #ifdef RTLIGHTS void D3D11BE_SetupForShadowMap(dlight_t *dl, int texwidth, int texheight, float shadowscale) { #define SHADOWMAP_SIZE 512 extern cvar_t r_shadow_shadowmapping_nearclip, r_shadow_shadowmapping_bias; float nc = r_shadow_shadowmapping_nearclip.value; float bias = r_shadow_shadowmapping_bias.value; //much of the projection matrix cancels out due to symmetry and stuff //we need to scale between -0.5,0.5 within the sub-image. the fragment shader will center on the subimage based upon the major axis. //in d3d, the depth value is scaled between 0 and 1 (gl is -1 to 1). //d3d's framebuffer is upside down or something annoying like that. shaderstate.lightshadowmapproj[0] = shadowscale * (1.0-(1.0/texwidth)) * 0.5/3.0; //pinch x inwards shaderstate.lightshadowmapproj[1] = -shadowscale * (1.0-(1.0/texheight)) * 0.5/2.0; //pinch y inwards shaderstate.lightshadowmapproj[2] = 0.5*(dl->radius+nc)/(nc-dl->radius); //proj matrix 10 shaderstate.lightshadowmapproj[3] = (dl->radius*nc)/(nc-dl->radius) - bias*nc*(1024/texheight); //proj matrix 14 shaderstate.lightshadowmapscale[0] = 1.0/(SHADOWMAP_SIZE*3); shaderstate.lightshadowmapscale[1] = -1.0/(SHADOWMAP_SIZE*2); } #endif void D3D11BE_SelectEntity(entity_t *ent) { BE_RotateForEntity(ent, ent->model); } void D3D11BE_GenBatchVBOs(vbo_t **vbochain, batch_t *firstbatch, batch_t *stopbatch) { int maxvboelements; int maxvboverts; int vert = 0, idx = 0; batch_t *batch; vbo_t *vbo; int i, j; mesh_t *m; ID3D11Buffer *vbuff; ID3D11Buffer *ebuff; index_t *vboedata, *vboedatastart; dx11_vbovdata_t *vbovdata, *vbovdatastart; D3D11_BUFFER_DESC vbodesc; D3D11_BUFFER_DESC ebodesc; D3D11_SUBRESOURCE_DATA srd; vbo = Z_Malloc(sizeof(*vbo)); maxvboverts = 0; maxvboelements = 0; for(batch = firstbatch; batch != stopbatch; batch = batch->next) { for (i=0 ; imaxmeshes ; i++) { m = batch->mesh[i]; maxvboelements += m->numindexes; maxvboverts += m->numvertexes; } } vbovdatastart = vbovdata = BZ_Malloc(sizeof(*vbovdata) * maxvboverts); vboedatastart = vboedata = BZ_Malloc(sizeof(*vboedata) * maxvboelements); for(batch = firstbatch; batch != stopbatch; batch = batch->next) { batch->vbo = vbo; for (j=0 ; jmaxmeshes ; j++) { m = batch->mesh[j]; m->vbofirstvert = vert; for (i = 0; i < m->numvertexes; i++) { VectorCopy(m->xyz_array[i], vbovdata->coord); vbovdata->coord[3] = 1; Vector2Copy(m->st_array[i], vbovdata->tex); if (m->lmst_array[0]) Vector2Copy(m->lmst_array[0][i], vbovdata->lm); else Vector2Copy(m->st_array[i], vbovdata->tex); if (m->normals_array) VectorCopy(m->normals_array[i], vbovdata->ndir); else VectorSet(vbovdata->ndir, 0, 0, 1); if (m->snormals_array) VectorCopy(m->snormals_array[i], vbovdata->sdir); else VectorSet(vbovdata->sdir, 1, 0, 0); if (m->tnormals_array) VectorCopy(m->tnormals_array[i], vbovdata->tdir); else VectorSet(vbovdata->tdir, 0, 1, 0); if (m->colors4f_array[0]) Vector4Scale(m->colors4f_array[0][i], 255, vbovdata->colorsb); else if (m->colors4b_array) Vector4Copy(m->colors4b_array[i], vbovdata->colorsb); else Vector4Set(vbovdata->colorsb, 255, 255, 255, 255); vbovdata++; } m->vbofirstelement = idx; for (i = 0; i < m->numindexes; i++) { *vboedata++ = vert + m->indexes[i]; } idx += m->numindexes; vert += m->numvertexes; } } //generate the ebo, and submit the data to the driver ebodesc.BindFlags = D3D11_BIND_INDEX_BUFFER; ebodesc.ByteWidth = sizeof(*vboedata) * maxvboelements; ebodesc.CPUAccessFlags = 0; ebodesc.MiscFlags = 0; ebodesc.StructureByteStride = 0; ebodesc.Usage = D3D11_USAGE_DEFAULT; srd.pSysMem = vboedatastart; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; ID3D11Device_CreateBuffer(pD3DDev11, &ebodesc, &srd, &ebuff); shaderstate.numlivevbos++; BZ_Free(vboedatastart); //generate the vbo, and submit the data to the driver vbodesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vbodesc.ByteWidth = sizeof(*vbovdata) * maxvboverts; vbodesc.CPUAccessFlags = 0; vbodesc.MiscFlags = 0; vbodesc.StructureByteStride = 0; vbodesc.Usage = D3D11_USAGE_DEFAULT; srd.pSysMem = vbovdatastart; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; ID3D11Device_CreateBuffer(pD3DDev11, &vbodesc, &srd, &vbuff); shaderstate.numlivevbos++; BZ_Free(vbovdatastart); vbovdata = NULL; vbo->coord.d3d.buff = vbuff; vbo->coord.d3d.offs = (quintptr_t)&vbovdata->coord; vbo->texcoord.d3d.buff = vbuff; vbo->texcoord.d3d.offs = (quintptr_t)&vbovdata->tex; vbo->lmcoord[0].d3d.buff = vbuff; vbo->lmcoord[0].d3d.offs = (quintptr_t)&vbovdata->lm; vbo->normals.d3d.buff = vbuff; vbo->normals.d3d.offs = (quintptr_t)&vbovdata->ndir; vbo->svector.d3d.buff = vbuff; vbo->svector.d3d.offs = (quintptr_t)&vbovdata->sdir; vbo->tvector.d3d.buff = vbuff; vbo->tvector.d3d.offs = (quintptr_t)&vbovdata->tdir; vbo->colours[0].d3d.buff = vbuff; vbo->colours[0].d3d.offs = (quintptr_t)&vbovdata->colorsb; vbo->indicies.d3d.buff = ebuff; vbo->indicies.d3d.offs = 0; vbo->indexcount = maxvboelements; vbo->vertcount = maxvboverts; vbo->next = *vbochain; *vbochain = vbo; } void D3D11BE_GenBrushModelVBO(model_t *mod) { unsigned int vcount, cvcount; batch_t *batch, *fbatch; int sortid; int i; fbatch = NULL; vcount = 0; for (sortid = 0; sortid < SHADER_SORT_COUNT; sortid++) { if (!mod->batches[sortid]) continue; for (fbatch = batch = mod->batches[sortid]; batch != NULL; batch = batch->next) { for (i = 0, cvcount = 0; i < batch->maxmeshes; i++) cvcount += batch->mesh[i]->numvertexes; //firstmesh got reused as the number of verticies in each batch if (vcount + cvcount > MAX_INDICIES) { D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch); fbatch = batch; vcount = 0; } vcount += cvcount; } D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch); } } /*Wipes a vbo*/ void D3D11BE_ClearVBO(vbo_t *vbo, qboolean dataonly) { ID3D11Buffer *vbuff = vbo->coord.d3d.buff; ID3D11Buffer *ebuff = vbo->indicies.d3d.buff; if (vbuff) { ID3D11Buffer_Release(vbuff); shaderstate.numlivevbos--; } if (ebuff) { ID3D11Buffer_Release(ebuff); shaderstate.numlivevbos--; } vbo->coord.d3d.buff = NULL; vbo->indicies.d3d.buff = NULL; if (!dataonly) BZ_Free(vbo); } /*upload all lightmaps at the start to reduce lags*/ static void BE_UploadLightmaps(qboolean force) { int i; for (i = 0; i < numlightmaps; i++) { if (!lightmap[i]) continue; if (force && !lightmap[i]->external) { lightmap[i]->rectchange.l = 0; lightmap[i]->rectchange.t = 0; lightmap[i]->rectchange.r = lightmap[i]->width; lightmap[i]->rectchange.b = lightmap[i]->height; lightmap[i]->modified = true; } if (lightmap[i]->modified) { D3D11_UploadLightmap(lightmap[i]); } } } void D3D11BE_UploadAllLightmaps(void) { BE_UploadLightmaps(true); } qboolean D3D11BE_LightCullModel(vec3_t org, model_t *model) { #ifdef RTLIGHTS if ((shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_STENCIL)) { /*true if hidden from current light*/ /*we have no rtlight support, so mneh*/ } #endif return false; } batch_t *D3D11BE_GetTempBatch(void) { if (shaderstate.wbatch >= shaderstate.maxwbatches) { shaderstate.wbatch++; return NULL; } return &shaderstate.wbatches[shaderstate.wbatch++]; } /*static float projd3dtogl[16] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, -1.0, 1.0 };*/ static float projgltod3d[16] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0 }; static void D3D11BE_SetupViewCBuffer(void) { dx11_cbuf_view_t *cbv; D3D11_MAPPED_SUBRESOURCE msr; if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &msr))) { Con_Printf("BE_RotateForEntity: failed to map constant buffer\n"); return; } cbv = (dx11_cbuf_view_t*)msr.pData; //we internally use gl-style projection matricies. //gl's viewport is based upon -1 to 1 depth. //d3d uses 0 to 1 depth. //so we scale the projection matrix by a bias #if 1 Matrix4_Multiply(projgltod3d, (shaderstate.depthrange<1)?r_refdef.m_projection_view:r_refdef.m_projection_std, cbv->m_projection); #else memcpy(cbv->m_projection, r_refdef.m_projection_std, sizeof(cbv->m_projection)); cbv->m_projection[10] = r_refdef.m_projection_std[10] * 0.5; #endif memcpy(cbv->m_view, r_refdef.m_view, sizeof(cbv->m_view)); VectorCopy(r_origin, cbv->v_eyepos); cbv->v_time = r_refdef.time; ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0); } void D3D11BE_Set2D(void) { D3D11_VIEWPORT vport; vport.TopLeftX = 0; vport.TopLeftY = 0; vport.Width = vid.pixelwidth; vport.Height = vid.pixelheight; vport.MinDepth = 0; vport.MaxDepth = shaderstate.depthrange = 1; ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport); D3D11BE_SetupViewCBuffer(); D3D11BE_Scissor(NULL); } void D3D11BE_SetupLightCBuffer(dlight_t *l, vec3_t colour) { extern cvar_t gl_specular; dx11_cbuf_light_t *cbl; D3D11_MAPPED_SUBRESOURCE msr; if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.lcbuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &msr))) { Con_Printf("BE_RotateForEntity: failed to map constant buffer\n"); return; } cbl = (dx11_cbuf_light_t*)msr.pData; cbl->l_lightradius = l->radius; Matrix4x4_CM_LightMatrixFromAxis(cbl->l_cubematrix, l->axis[0], l->axis[1], l->axis[2], l->origin); VectorCopy(l->origin, cbl->l_lightposition); cbl->padl1 = 0; VectorCopy(colour, cbl->l_colour); #ifdef RTLIGHTS VectorCopy(l->lightcolourscales, cbl->l_lightcolourscale); cbl->l_lightcolourscale[0] = l->lightcolourscales[0]; cbl->l_lightcolourscale[1] = l->lightcolourscales[1]; cbl->l_lightcolourscale[2] = l->lightcolourscales[2] * gl_specular.value; #endif cbl->l_lightradius = l->radius; Vector4Copy(shaderstate.lightshadowmapproj, cbl->l_shadowmapproj); Vector2Copy(shaderstate.lightshadowmapscale, cbl->l_shadowmapscale); ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.lcbuffer, 0); } static void R_FetchPlayerColour(unsigned int cv, vec4_t rgba) { int i; if (cv >= 16) { rgba[0] = (((cv&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[15]+0)) / (256.0*256); rgba[1] = (((cv&0x00ff00)>>8)**((unsigned char*)&d_8to24rgbtable[15]+1)) / (256.0*256); rgba[2] = (((cv&0x0000ff)>>0)**((unsigned char*)&d_8to24rgbtable[15]+2)) / (256.0*256); rgba[3] = 1.0; return; } i = cv; if (i >= 8) { i<<=4; } else { i<<=4; i+=15; } i*=3; rgba[0] = host_basepal[i+0] / 255.0; rgba[1] = host_basepal[i+1] / 255.0; rgba[2] = host_basepal[i+2] / 255.0; rgba[3] = 1.0; } //also updates the entity constant buffer static void BE_RotateForEntity (const entity_t *e, const model_t *mod) { int i; float ndr; float modelinv[16]; float *m = shaderstate.m_model; dx11_cbuf_entity_t *cbe; D3D11_MAPPED_SUBRESOURCE msr; shaderstate.ecbufferidx = (shaderstate.ecbufferidx + 1) & (NUMECBUFFERS-1); if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0, D3D11_MAP_WRITE_DISCARD, 0, &msr))) { Con_Printf("BE_RotateForEntity: failed to map constant buffer\n"); return; } cbe = (dx11_cbuf_entity_t*)msr.pData; shaderstate.curentity = e; if ((e->flags & RF_WEAPONMODEL) && r_refdef.playerview->viewentity > 0) { float em[16]; float vm[16]; if (e->flags & RF_WEAPONMODELNOBOB) { vm[0] = vpn[0]; vm[1] = vpn[1]; vm[2] = vpn[2]; vm[3] = 0; vm[4] = -vright[0]; vm[5] = -vright[1]; vm[6] = -vright[2]; vm[7] = 0; vm[8] = vup[0]; vm[9] = vup[1]; vm[10] = vup[2]; vm[11] = 0; vm[12] = r_refdef.vieworg[0]; vm[13] = r_refdef.vieworg[1]; vm[14] = r_refdef.vieworg[2]; vm[15] = 1; } else { vm[0] = r_refdef.playerview->vw_axis[0][0]; vm[1] = r_refdef.playerview->vw_axis[0][1]; vm[2] = r_refdef.playerview->vw_axis[0][2]; vm[3] = 0; vm[4] = r_refdef.playerview->vw_axis[1][0]; vm[5] = r_refdef.playerview->vw_axis[1][1]; vm[6] = r_refdef.playerview->vw_axis[1][2]; vm[7] = 0; vm[8] = r_refdef.playerview->vw_axis[2][0]; vm[9] = r_refdef.playerview->vw_axis[2][1]; vm[10] = r_refdef.playerview->vw_axis[2][2]; vm[11] = 0; vm[12] = r_refdef.playerview->vw_origin[0]; vm[13] = r_refdef.playerview->vw_origin[1]; vm[14] = r_refdef.playerview->vw_origin[2]; vm[15] = 1; } em[0] = e->axis[0][0]; em[1] = e->axis[0][1]; em[2] = e->axis[0][2]; em[3] = 0; em[4] = e->axis[1][0]; em[5] = e->axis[1][1]; em[6] = e->axis[1][2]; em[7] = 0; em[8] = e->axis[2][0]; em[9] = e->axis[2][1]; em[10] = e->axis[2][2]; em[11] = 0; em[12] = e->origin[0]; em[13] = e->origin[1]; em[14] = e->origin[2]; em[15] = 1; Matrix4_Multiply(vm, em, m); } else { m[0] = e->axis[0][0]; m[1] = e->axis[0][1]; m[2] = e->axis[0][2]; m[3] = 0; m[4] = e->axis[1][0]; m[5] = e->axis[1][1]; m[6] = e->axis[1][2]; m[7] = 0; m[8] = e->axis[2][0]; m[9] = e->axis[2][1]; m[10] = e->axis[2][2]; m[11] = 0; m[12] = e->origin[0]; m[13] = e->origin[1]; m[14] = e->origin[2]; m[15] = 1; } if (e->scale != 1 && e->scale != 0) //hexen 2 stuff { #ifdef HEXEN2 float z; float escale; escale = e->scale; switch(e->drawflags&SCALE_TYPE_MASK) { default: case SCALE_TYPE_UNIFORM: VectorScale((m+0), escale, (m+0)); VectorScale((m+4), escale, (m+4)); VectorScale((m+8), escale, (m+8)); break; case SCALE_TYPE_XYONLY: VectorScale((m+0), escale, (m+0)); VectorScale((m+4), escale, (m+4)); break; case SCALE_TYPE_ZONLY: VectorScale((m+8), escale, (m+8)); break; } if (mod && (e->drawflags&SCALE_TYPE_MASK) != SCALE_TYPE_XYONLY) { switch(e->drawflags&SCALE_ORIGIN_MASK) { case SCALE_ORIGIN_CENTER: z = ((mod->maxs[2] + mod->mins[2]) * (1-escale))/2; VectorMA((m+12), z, e->axis[2], (m+12)); break; case SCALE_ORIGIN_BOTTOM: VectorMA((m+12), mod->mins[2]*(1-escale), e->axis[2], (m+12)); break; case SCALE_ORIGIN_TOP: VectorMA((m+12), -mod->maxs[2], e->axis[2], (m+12)); break; } } #else VectorScale((m+0), e->scale, (m+0)); VectorScale((m+4), e->scale, (m+4)); VectorScale((m+8), e->scale, (m+8)); #endif } else if (mod && !strcmp(mod->name, "progs/eyes.mdl")) { /*resize eyes, to make them easier to see*/ m[14] -= (22 + 8); VectorScale((m+0), 2, (m+0)); VectorScale((m+4), 2, (m+4)); VectorScale((m+8), 2, (m+8)); } if (mod && !ruleset_allow_larger_models.ival && mod->clampscale != 1) { //possibly this should be on a per-frame basis, but that's a real pain to do Con_DPrintf("Rescaling %s by %f\n", mod->name, mod->clampscale); VectorScale((m+0), mod->clampscale, (m+0)); VectorScale((m+4), mod->clampscale, (m+4)); VectorScale((m+8), mod->clampscale, (m+8)); } memcpy(cbe->m_model, m, sizeof(cbe->m_model)); Matrix4_Invert(shaderstate.m_model, modelinv); cbe->e_time = r_refdef.time - shaderstate.curentity->shaderTime; VectorCopy(e->light_avg, cbe->e_light_ambient); VectorCopy(e->light_dir, cbe->e_light_dir); VectorCopy(e->light_range, cbe->e_light_mul); R_FetchPlayerColour(e->topcolour, cbe->e_uppercolour); R_FetchPlayerColour(e->bottomcolour, cbe->e_lowercolour); R_FetchPlayerColour(e->bottomcolour, cbe->e_colourmod); if (shaderstate.flags & BEF_FORCECOLOURMOD) Vector4Copy(e->shaderRGBAf, cbe->e_colourmod); else Vector4Set(cbe->e_colourmod, 1, 1, 1, e->shaderRGBAf[3]); VectorCopy(e->glowmod, cbe->e_glowmod);cbe->e_glowmod[3] = 1; //various stuff in modelspace Matrix4x4_CM_Transform3(modelinv, r_origin, cbe->e_eyepos); for (i = 0; i < MAXRLIGHTMAPS ; i++) { extern cvar_t gl_overbright; unsigned char s = shaderstate.curbatch?shaderstate.curbatch->lmlightstyle[i]:0; float sc; if (s == 255) { if (i == 0) { if (shaderstate.curentity->model && shaderstate.curentity->model->engineflags & MDLF_NEEDOVERBRIGHT) sc = (1<e_lmscale[i][0] = sc; cbe->e_lmscale[i][1] = sc; cbe->e_lmscale[i][2] = sc; cbe->e_lmscale[i][3] = 1; i++; } for (; i < MAXRLIGHTMAPS ; i++) { cbe->e_lmscale[i][0] = 0; cbe->e_lmscale[i][1] = 0; cbe->e_lmscale[i][2] = 0; cbe->e_lmscale[i][3] = 1; } break; } if (shaderstate.curentity->model && shaderstate.curentity->model->engineflags & MDLF_NEEDOVERBRIGHT) sc = (1<e_lmscale[i], sc, sc, sc, 1); } ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0); ndr = (e->flags & RF_DEPTHHACK)?0.333:1; if (ndr != shaderstate.depthrange) { D3D11_VIEWPORT vport; shaderstate.depthrange = ndr; vport.TopLeftX = r_refdef.pxrect.x; vport.TopLeftY = r_refdef.pxrect.y; vport.Width = r_refdef.pxrect.width; vport.Height = r_refdef.pxrect.height; vport.MinDepth = 0; vport.MaxDepth = shaderstate.depthrange; ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport); D3D11BE_SetupViewCBuffer(); } } void D3D11BE_SubmitBatch(batch_t *batch) { shader_t *shader = batch->shader; shaderstate.nummeshes = batch->meshes - batch->firstmesh; if (!shaderstate.nummeshes) return; shaderstate.curbatch = batch; shaderstate.batchvbo = batch->vbo; shaderstate.meshlist = batch->mesh + batch->firstmesh; shaderstate.curshader = shader; if (shaderstate.curentity != batch->ent) { BE_RotateForEntity(batch->ent, batch->ent->model); shaderstate.curtime = r_refdef.time - shaderstate.curentity->shaderTime; } if (batch->skin) shaderstate.curtexnums = batch->skin; else if (shader->numdefaulttextures) shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures); else shaderstate.curtexnums = shader->defaulttextures; shaderstate.flags = batch->flags; BE_DrawMeshChain_Internal(); } void D3D11BE_DrawMesh_List(shader_t *shader, int nummeshes, mesh_t **meshlist, vbo_t *vbo, texnums_t *texnums, unsigned int beflags) { shaderstate.curbatch = &shaderstate.dummybatch; shaderstate.batchvbo = vbo; shaderstate.curshader = shader; if (texnums) shaderstate.curtexnums = texnums; else if (shader->numdefaulttextures) shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures); else shaderstate.curtexnums = shader->defaulttextures; shaderstate.meshlist = meshlist; shaderstate.nummeshes = nummeshes; shaderstate.flags = beflags; BE_DrawMeshChain_Internal(); } void D3D11BE_DrawMesh_Single(shader_t *shader, mesh_t *meshchain, vbo_t *vbo, unsigned int beflags) { shaderstate.curbatch = &shaderstate.dummybatch; shaderstate.batchvbo = vbo; shaderstate.curtime = realtime; shaderstate.curshader = shader; if (shader->numdefaulttextures) shaderstate.curtexnums = shader->defaulttextures + ((int)(shader->defaulttextures_fps * shaderstate.curtime) % shader->numdefaulttextures); else shaderstate.curtexnums = shader->defaulttextures; shaderstate.meshlist = &meshchain; shaderstate.nummeshes = 1; shaderstate.flags = beflags; BE_DrawMeshChain_Internal(); } static void BE_SubmitMeshesSortList(batch_t *sortlist) { batch_t *batch; for (batch = sortlist; batch; batch = batch->next) { if (batch->meshes == batch->firstmesh) continue; if (batch->buildmeshes) batch->buildmeshes(batch); if (batch->shader->flags & SHADER_NODLIGHT) if (shaderstate.mode == BEM_LIGHT) continue; if (batch->shader->flags & SHADER_SKY) { if (shaderstate.mode == BEM_STANDARD || shaderstate.mode == BEM_DEPTHDARK) { if (R_DrawSkyChain (batch)) continue; } else if (shaderstate.mode != BEM_FOG && shaderstate.mode != BEM_CREPUSCULAR && shaderstate.mode != BEM_WIREFRAME) continue; } BE_SubmitBatch(batch); } } /*generates a new modelview matrix, as well as vpn vectors*/ static void R_MirrorMatrix(plane_t *plane) { float mirror[16]; float view[16]; float result[16]; vec3_t pnorm; VectorNegate(plane->normal, pnorm); mirror[0] = 1-2*pnorm[0]*pnorm[0]; mirror[1] = -2*pnorm[0]*pnorm[1]; mirror[2] = -2*pnorm[0]*pnorm[2]; mirror[3] = 0; mirror[4] = -2*pnorm[1]*pnorm[0]; mirror[5] = 1-2*pnorm[1]*pnorm[1]; mirror[6] = -2*pnorm[1]*pnorm[2] ; mirror[7] = 0; mirror[8] = -2*pnorm[2]*pnorm[0]; mirror[9] = -2*pnorm[2]*pnorm[1]; mirror[10] = 1-2*pnorm[2]*pnorm[2]; mirror[11] = 0; mirror[12] = -2*pnorm[0]*plane->dist; mirror[13] = -2*pnorm[1]*plane->dist; mirror[14] = -2*pnorm[2]*plane->dist; mirror[15] = 1; view[0] = vpn[0]; view[1] = vpn[1]; view[2] = vpn[2]; view[3] = 0; view[4] = -vright[0]; view[5] = -vright[1]; view[6] = -vright[2]; view[7] = 0; view[8] = vup[0]; view[9] = vup[1]; view[10] = vup[2]; view[11] = 0; view[12] = r_refdef.vieworg[0]; view[13] = r_refdef.vieworg[1]; view[14] = r_refdef.vieworg[2]; view[15] = 1; VectorMA(r_refdef.vieworg, 0.25, plane->normal, r_refdef.pvsorigin); Matrix4_Multiply(mirror, view, result); vpn[0] = result[0]; vpn[1] = result[1]; vpn[2] = result[2]; vright[0] = -result[4]; vright[1] = -result[5]; vright[2] = -result[6]; vup[0] = result[8]; vup[1] = result[9]; vup[2] = result[10]; r_refdef.vieworg[0] = result[12]; r_refdef.vieworg[1] = result[13]; r_refdef.vieworg[2] = result[14]; } static entity_t *R_NearestPortal(plane_t *plane) { int i; entity_t *best = NULL; float dist, bestd = 0; //for q3-compat, portals on world scan for a visedict to use for their view. for (i = 0; i < cl_numvisedicts; i++) { if (cl_visedicts[i].rtype == RT_PORTALSURFACE) { dist = DotProduct(cl_visedicts[i].origin, plane->normal)-plane->dist; dist = fabs(dist); if (dist < 64 && (!best || dist < bestd)) best = &cl_visedicts[i]; } } return best; } static void TransformCoord(vec3_t in, vec3_t planea[3], vec3_t planeo, vec3_t viewa[3], vec3_t viewo, vec3_t result) { int i; vec3_t local; vec3_t transformed; float d; local[0] = in[0] - planeo[0]; local[1] = in[1] - planeo[1]; local[2] = in[2] - planeo[2]; VectorClear(transformed); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(local, planea[i]); VectorMA(transformed, d, viewa[i], transformed); } result[0] = transformed[0] + viewo[0]; result[1] = transformed[1] + viewo[1]; result[2] = transformed[2] + viewo[2]; } static void TransformDir(vec3_t in, vec3_t planea[3], vec3_t viewa[3], vec3_t result) { int i; float d; vec3_t tmp; VectorCopy(in, tmp); VectorClear(result); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(tmp, planea[i]); VectorMA(result, d, viewa[i], result); } } static void R_DrawPortal(batch_t *batch, batch_t **blist) { entity_t *view; // float glplane[4]; plane_t plane; refdef_t oldrefdef; mesh_t *mesh = batch->mesh[batch->firstmesh]; int sort; if (r_refdef.recurse)// || !r_portalrecursion.ival) return; VectorCopy(mesh->normals_array[0], plane.normal); plane.dist = DotProduct(mesh->xyz_array[0], plane.normal); //if we're too far away from the surface, don't draw anything if (batch->shader->flags & SHADER_AGEN_PORTAL) { /*there's a portal alpha blend on that surface, that fades out after this distance*/ if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist > batch->shader->portaldist) return; } //if we're behind it, then also don't draw anything. if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist < 0) return; view = R_NearestPortal(&plane); //if (!view) // return; oldrefdef = r_refdef; r_refdef.recurse = true; r_refdef.externalview = true; if (!view || VectorCompare(view->origin, view->oldorigin)) { r_refdef.flipcull ^= SHADER_CULL_FLIP; R_MirrorMatrix(&plane); } else { float d; vec3_t paxis[3], porigin, vaxis[3], vorg; void PerpendicularVector( vec3_t dst, const vec3_t src ); /*calculate where the surface is meant to be*/ VectorCopy(mesh->normals_array[0], paxis[0]); PerpendicularVector(paxis[1], paxis[0]); CrossProduct(paxis[0], paxis[1], paxis[2]); d = DotProduct(view->origin, plane.normal) - plane.dist; VectorMA(view->origin, -d, paxis[0], porigin); /*grab the camera origin*/ VectorNegate(view->axis[0], vaxis[0]); VectorNegate(view->axis[1], vaxis[1]); VectorCopy(view->axis[2], vaxis[2]); VectorCopy(view->oldorigin, vorg); VectorCopy(vorg, r_refdef.pvsorigin); /*rotate it a bit*/ RotatePointAroundVector(vaxis[1], vaxis[0], view->axis[1], sin(realtime)*4); CrossProduct(vaxis[0], vaxis[1], vaxis[2]); TransformCoord(oldrefdef.vieworg, paxis, porigin, vaxis, vorg, r_refdef.vieworg); TransformDir(vpn, paxis, vaxis, vpn); TransformDir(vright, paxis, vaxis, vright); TransformDir(vup, paxis, vaxis, vup); } Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg); VectorAngles(vpn, vup, r_refdef.viewangles, true); VectorCopy(r_refdef.vieworg, r_origin); /*FIXME: the batch stuff should be done in renderscene*/ /*fixup the first mesh index*/ for (sort = 0; sort < SHADER_SORT_COUNT; sort++) for (batch = blist[sort]; batch; batch = batch->next) { batch->firstmesh = batch->meshes; } R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view); /*FIXME: we need to borrow pretty much everything about portal positioning from the gl renderer. make it common code or something, because this is horrendous. if (r_refdef.frustum_numplanes < MAXFRUSTUMPLANES) { extern int SignbitsForPlane (mplane_t *out); mplane_t fp; VectorCopy(plane.normal, fp.normal); fp.dist = plane.dist; fp.type = PLANE_ANYZ; fp.signbits = SignbitsForPlane (&fp); if (portaltype == 1 || portaltype == 2) R_ObliqueNearClip(r_refdef.m_view, &fp); //our own culling should be an epsilon forwards so we don't still draw things behind the line due to precision issues. fp.dist += 0.01; r_refdef.frustum[r_refdef.frustum_numplanes++] = fp; } */ shaderstate.curentity = NULL; Surf_SetupFrame(); Surf_DrawWorld(); for (sort = 0; sort < SHADER_SORT_COUNT; sort++) for (batch = blist[sort]; batch; batch = batch->next) { batch->firstmesh = 0; } r_refdef = oldrefdef; /*broken stuff*/ AngleVectors (r_refdef.viewangles, vpn, vright, vup); VectorCopy (r_refdef.vieworg, r_origin); R_SetFrustum (r_refdef.m_projection_std, r_refdef.m_view); shaderstate.curentity = NULL; D3D11BE_SetupViewCBuffer(); //fixme: should be some other variable... ID3D11DeviceContext_ClearDepthStencilView(d3ddevctx, fb_backdepthstencil, D3D11_CLEAR_DEPTH, 1, 0); //is it faster to clear the stencil too? //fixme: mask the batch's depth so that later batches don't break it. } static void BE_SubmitMeshesPortals(batch_t **worldlist, batch_t *dynamiclist) { batch_t *batch, *old; int i; /*attempt to draw portal shaders*/ if (shaderstate.mode == BEM_STANDARD) { for (i = 0; i < 2; i++) { for (batch = i?dynamiclist:worldlist[SHADER_SORT_PORTAL]; batch; batch = batch->next) { if (batch->meshes == batch->firstmesh) continue; if (batch->buildmeshes) batch->buildmeshes(batch); /*draw already-drawn portals as depth-only, to ensure that their contents are not harmed*/ BE_SelectMode(BEM_DEPTHONLY); for (old = worldlist[SHADER_SORT_PORTAL]; old && old != batch; old = old->next) { if (old->meshes == old->firstmesh) continue; BE_SubmitBatch(old); } if (!old) { for (old = dynamiclist; old != batch; old = old->next) { if (old->meshes == old->firstmesh) continue; BE_SubmitBatch(old); } } BE_SelectMode(BEM_STANDARD); R_DrawPortal(batch, worldlist); } } } } void D3D11BE_SubmitMeshes (batch_t **worldbatches, batch_t **blist, int first, int stop) { int i; for (i = first; i < stop; i++) { if (worldbatches) { if (i == SHADER_SORT_PORTAL /*&& !r_noportals.ival*/ && !r_refdef.recurse) BE_SubmitMeshesPortals(worldbatches, blist[i]); BE_SubmitMeshesSortList(worldbatches[i]); } BE_SubmitMeshesSortList(blist[i]); } } #ifdef RTLIGHTS void D3D11BE_BaseEntTextures(void) { batch_t *batches[SHADER_SORT_COUNT]; BE_GenModelBatches(batches, shaderstate.curdlight, shaderstate.mode); D3D11BE_SubmitMeshes(NULL, batches, SHADER_SORT_PORTAL, SHADER_SORT_SEETHROUGH+1); BE_SelectEntity(&r_worldentity); } void D3D11BE_GenerateShadowBuffer(void **vbuf_out, vecV_t *verts, int numverts, void **ibuf_out, index_t *indicies, int numindicies) { D3D11_BUFFER_DESC desc; D3D11_SUBRESOURCE_DATA srd; ID3D11Buffer *vbuf; ID3D11Buffer *ibuf; //generate the ebo, and submit the data to the driver desc.BindFlags = D3D11_BIND_VERTEX_BUFFER; desc.ByteWidth = sizeof(*verts) * numverts; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; desc.StructureByteStride = 0; desc.Usage = D3D11_USAGE_DEFAULT; srd.pSysMem = verts; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; ID3D11Device_CreateBuffer(pD3DDev11, &desc, &srd, &vbuf); //generate the vbo, and submit the data to the driver desc.BindFlags = D3D11_BIND_INDEX_BUFFER; desc.ByteWidth = sizeof(*indicies) * numindicies; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; desc.StructureByteStride = 0; desc.Usage = D3D11_USAGE_DEFAULT; srd.pSysMem = indicies; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; ID3D11Device_CreateBuffer(pD3DDev11, &desc, &srd, &ibuf); shaderstate.numliveshadowbuffers++; *vbuf_out = vbuf; *ibuf_out = ibuf; } void D3D11_DestroyShadowBuffer(void *vbuf_in, void *ibuf_in) { ID3D11Buffer *vbuf = vbuf_in; ID3D11Buffer *ibuf = ibuf_in; if (vbuf && ibuf) { ID3D11Buffer_Release(vbuf); ID3D11Buffer_Release(ibuf); shaderstate.numliveshadowbuffers--; } } //draws all depth-only surfaces from the perspective of the light. void D3D11BE_RenderShadowBuffer(unsigned int numverts, void *vbuf, unsigned int numindicies, void *ibuf) { ID3D11Buffer *vbufs[] = {vbuf}; int vstrides[] = {sizeof(vecV_t)}; int voffsets[] = {0}; int i; if (!shaderstate.depthonly->prog) return; D3D11BE_SetupViewCBuffer(); D3D11BE_Cull(SHADER_CULL_FRONT, r_polygonoffset_shadowmap_offset.ival, r_polygonoffset_shadowmap_factor.value); for (i = 0; i < shaderstate.lastpasscount; i++) { shaderstate.pendingtextures[i] = NULL; shaderstate.textureschanged = true; } if (shaderstate.textureschanged) ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, shaderstate.lastpasscount, shaderstate.pendingtextures); shaderstate.lastpasscount = 0; ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, 1, vbufs, vstrides, voffsets); ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, ibuf, DXGI_FORMAT_INDEX_UINT, 0); BE_ApplyUniforms(shaderstate.depthonly->prog, shaderstate.depthonly->prog->permu[0]); ID3D11DeviceContext_DrawIndexed(d3ddevctx, numindicies, 0, 0); } void D3D11BE_DoneShadows(void) { D3D11BE_SetupViewCBuffer(); BE_SelectEntity(&r_worldentity); D3D11BE_BeginShadowmapFace(); } #endif void D3D11BE_DrawWorld (batch_t **worldbatches) { batch_t *batches[SHADER_SORT_COUNT]; RSpeedLocals(); shaderstate.curentity = NULL; shaderstate.depthrange = 0; if (!r_refdef.recurse) { if (shaderstate.wbatch > shaderstate.maxwbatches) { int newm = shaderstate.wbatch; Z_Free(shaderstate.wbatches); shaderstate.wbatches = Z_Malloc(newm * sizeof(*shaderstate.wbatches)); memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches)); shaderstate.maxwbatches = newm; } shaderstate.wbatch = 0; } D3D11BE_SetupViewCBuffer(); shaderstate.curdlight = NULL; BE_GenModelBatches(batches, shaderstate.curdlight, BEM_STANDARD); if (r_refdef.scenevis) { BE_UploadLightmaps(false); //make sure the world draws correctly r_worldentity.shaderRGBAf[0] = 1; r_worldentity.shaderRGBAf[1] = 1; r_worldentity.shaderRGBAf[2] = 1; r_worldentity.shaderRGBAf[3] = 1; r_worldentity.axis[0][0] = 1; r_worldentity.axis[1][1] = 1; r_worldentity.axis[2][2] = 1; #ifdef RTLIGHTS if (r_refdef.scenevis && r_shadow_realtime_world.ival) shaderstate.identitylighting = r_shadow_realtime_world_lightmaps.value; else #endif shaderstate.identitylighting = r_lightmap_scale.value; shaderstate.identitylighting *= r_refdef.hdr_value; // shaderstate.identitylightmap = shaderstate.identitylighting / (1<x)*vid.fbpwidth; drect.right = (rect->x + rect->width)*vid.fbpwidth; drect.bottom = (1-(rect->y))*vid.fbpheight; drect.top = (1-(rect->y + rect->height))*vid.fbpheight; if (drect.left < 0) drect.left = 0; if (drect.top < 0) drect.top = 0; } else { drect.left = 0; drect.right = vid.fbpwidth; drect.top = 0; drect.bottom = vid.fbpheight; } ID3D11DeviceContext_RSSetScissorRects(d3ddevctx, 1, &drect); } #ifdef RTLIGHTS void D3D11BE_BeginShadowmapFace(void) { D3D11_VIEWPORT vport; vport.TopLeftX = r_refdef.pxrect.x; vport.TopLeftY = r_refdef.pxrect.y; vport.Width = r_refdef.pxrect.width; vport.Height = r_refdef.pxrect.height; vport.MinDepth = 0; vport.MaxDepth = 1; ID3D11DeviceContext_RSSetViewports(d3ddevctx, 1, &vport); D3D11BE_Cull(SHADER_CULL_FRONT, r_polygonoffset_shadowmap_offset.ival, r_polygonoffset_shadowmap_factor.value); } #endif #endif