/* SHA-1 in C By Steve Reid 100% Public Domain Test Vectors (from FIPS PUB 180-1) "abc" A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 A million repetitions of "a" 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F This file came to FTE via EzQuake. */ #include "quakedef.h" #include /* #define SHA1HANDSOFF * Copies data before messing with it. */ #define SHA1HANDSOFF typedef struct { unsigned int state[5]; unsigned int count[2]; unsigned char buffer[64]; } SHA1_CTX; #define SHA1_DIGEST_SIZE 20 #define ShaBigLong(l) (((unsigned char*)&l)[0]<<24) | (((unsigned char*)&l)[1]<<16) | (((unsigned char*)&l)[2]<<8) | (((unsigned char*)&l)[3]<<0) #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) #define blk0(i) (block->l[i] = ShaBigLong(block->l[i])) #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]) { unsigned int a, b, c, d, e; typedef union { unsigned char c[64]; unsigned int l[16]; } CHAR64LONG16; CHAR64LONG16* block; #ifdef SHA1HANDSOFF unsigned char workspace[64]; block = (CHAR64LONG16*)workspace; memcpy(block, buffer, 64); #else block = (CHAR64LONG16*)buffer; #endif /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /* SHA1Init - Initialize new context */ static void SHA1Init(void *ctx) { SHA1_CTX *context = ctx; /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } /* Run your data through this. */ static void SHA1Update(void *ctx, const void* data, size_t len) { SHA1_CTX *context = ctx; size_t i, j; j = (context->count[0] >> 3) & 63; if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++; context->count[1] += (len >> 29); if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(context->state, (const qbyte*)data + i); } j = 0; } else i = 0; memcpy(&context->buffer[j], (const qbyte*)data + i, len - i); } /* Add padding and return the message digest. */ static void SHA1Final(unsigned char digest[SHA1_DIGEST_SIZE], void *ctx) { SHA1_CTX *context = ctx; unsigned int i, j; unsigned char finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } SHA1Update(context, (unsigned char *)"\200", 1); while ((context->count[0] & 504) != 448) { SHA1Update(context, (unsigned char *)"\0", 1); } SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < SHA1_DIGEST_SIZE; i++) { digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } /* Wipe variables */ i = j = 0; memset(context->buffer, 0, 64); memset(context->state, 0, 20); memset(context->count, 0, 8); memset(&finalcount, 0, 8); #ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */ SHA1Transform(context->state, context->buffer); #endif } hashfunc_t hash_sha1 = { SHA1_DIGEST_SIZE, sizeof(SHA1_CTX), SHA1Init, SHA1Update, SHA1Final, }; unsigned int hashfunc_terminate_uint(const hashfunc_t *func, void *context) { unsigned int r = 0, l; unsigned char *digest = alloca(func->digestsize); func->terminate(digest, context); for (l = 0; l < func->digestsize; l++) r ^= digest[l]<<((l%sizeof(r))*8); return r; } unsigned int CalcHashInt(const hashfunc_t *func, const unsigned char *data, size_t datasize) { void *ctx = alloca(func->contextsize); func->init(ctx); func->process(ctx, data, datasize); return hashfunc_terminate_uint(func, ctx); } size_t CalcHash(const hashfunc_t *func, unsigned char *digest, size_t maxdigestsize, const unsigned char *string, size_t stringlen) { void *ctx = alloca(func->contextsize); if (maxdigestsize < func->digestsize) return 0; //panic func->init(ctx); func->process(ctx, string, stringlen); func->terminate(digest, ctx); return func->digestsize; } /* hmac-sha1.c -- hashed message authentication codes Copyright (C) 2005, 2006 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Written by Simon Josefsson. hacked up a bit by someone else... */ #define IPAD 0x36 #define OPAD 0x5c static void memxor(char *dest, const char *src, size_t length) { size_t i; for (i = 0; i < length; i++) { dest[i] ^= src[i]; } } //typedef size_t hashfunc_t(unsigned char *digest, size_t maxdigestsize, size_t numstrings, const unsigned char **strings, size_t *stringlens); size_t CalcHMAC(const hashfunc_t *hashfunc, unsigned char *digest, size_t maxdigestsize, const unsigned char *data, size_t datalen, const unsigned char *key, size_t keylen) { #define HMAC_DIGEST_MAXSIZE 64 qbyte optkeybuf[HMAC_DIGEST_MAXSIZE]; qbyte innerhash[HMAC_DIGEST_MAXSIZE]; qbyte block[64]; if (hashfunc->digestsize > HMAC_DIGEST_MAXSIZE || hashfunc->digestsize > maxdigestsize) return 0; /* Reduce the key's size, so that it is never larger than a block. */ if (keylen > sizeof(block)) { qbyte *ctx = alloca(hashfunc->contextsize); hashfunc->init(ctx); hashfunc->process(ctx, key, keylen); hashfunc->terminate(optkeybuf, ctx); key=optkeybuf; } /* Compute INNERHASH from KEY and IN. */ memset (block, IPAD, sizeof (block)); memxor (block, key, keylen); { qbyte *ctx = alloca(hashfunc->contextsize); hashfunc->init(ctx); hashfunc->process(ctx, block, sizeof(block)); hashfunc->process(ctx, data, datalen); hashfunc->terminate(innerhash, ctx); } /* Compute result from KEY and INNERHASH. */ memset (block, OPAD, sizeof (block)); memxor (block, key, keylen); { qbyte *ctx = alloca(hashfunc->contextsize); hashfunc->init(ctx); hashfunc->process(ctx, block, sizeof(block)); hashfunc->process(ctx, innerhash, hashfunc->digestsize); hashfunc->terminate(digest, ctx); return hashfunc->digestsize; } }