/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the included (GNU.txt) GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "qtv.h" #include #define curtime Sys_Milliseconds() void NET_InitUDPSocket(cluster_t *cluster, int port, int socketid) { int sock; int pf; struct sockaddr *address; struct sockaddr_in address4; struct sockaddr_in6 address6; int addrlen; unsigned long nonblocking = true; unsigned long v6only = false; #pragma message("fixme") switch(socketid) { case SG_IPV6: pf = PF_INET6; memset(&address6, 0, sizeof(address6)); address6.sin6_family = AF_INET6; address6.sin6_port = htons((u_short)port); address = (struct sockaddr*)&address6; addrlen = sizeof(address6); break; case SG_IPV4: pf = PF_INET; address4.sin_family = AF_INET; address4.sin_addr.s_addr = INADDR_ANY; address4.sin_port = htons((u_short)port); address = (struct sockaddr*)&address4; addrlen = sizeof(address4); break; default: return; //erk } if (socketid == SG_IPV4 && !v6only && cluster->qwdsocket[SG_IPV6] != INVALID_SOCKET) { int sz = sizeof(v6only); if (getsockopt(cluster->qwdsocket[SG_IPV6], IPPROTO_IPV6, IPV6_V6ONLY, (char *)&v6only, &sz) == 0 && !v6only) port = 0; } if (!port) { if (cluster->qwdsocket[socketid] != INVALID_SOCKET) { closesocket(cluster->qwdsocket[socketid]); cluster->qwdsocket[socketid] = INVALID_SOCKET; Sys_Printf(cluster, "closed udp%i port\n", socketid?6:4); } return; } if ((sock = socket (pf, SOCK_DGRAM, IPPROTO_UDP)) == INVALID_SOCKET) { return; } if (ioctlsocket (sock, FIONBIO, &nonblocking) == -1) { closesocket(sock); return; } if (pf == AF_INET6) if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&v6only, sizeof(v6only)) == -1) v6only = true; if (bind (sock, (void *)address, addrlen) == -1) { printf("socket bind error %i (%s)\n", qerrno, strerror(qerrno)); closesocket(sock); return; } if (cluster->qwdsocket[socketid] != INVALID_SOCKET) { closesocket(cluster->qwdsocket[socketid]); Sys_Printf(cluster, "closed udp%i port\n", socketid?6:4); } cluster->qwdsocket[socketid] = sock; if (v6only) Sys_Printf(cluster, "opened udp%i port %i\n", socketid?6:4, port); else Sys_Printf(cluster, "opened udp port %i\n", port); } SOCKET NET_ChooseSocket(SOCKET sock[SOCKETGROUPS], netadr_t *toadr, netadr_t ina) { #ifdef AF_INET6 if (((struct sockaddr *)ina.sockaddr)->sa_family == AF_INET6) { *toadr = ina; return sock[SG_IPV6]; } if (sock[SG_IPV4] == INVALID_SOCKET && sock[SG_IPV6] != INVALID_SOCKET) { struct sockaddr_in6 *out = (struct sockaddr_in6*)toadr->sockaddr; struct sockaddr_in *in = (struct sockaddr_in*)ina.sockaddr; toadr->tcpcon = ina.tcpcon; memset(out, 0, sizeof(*out)); out->sin6_family = AF_INET6; *(short*)&out->sin6_addr.s6_addr[10] = 0xffff; *(int*)&out->sin6_addr.s6_addr[12] = in->sin_addr.s_addr; out->sin6_port = in->sin_port; return sock[SG_IPV6]; } #endif *toadr = ina; return sock[SG_IPV4]; } #ifdef LIBQTV void QTV_DoReceive(void *data, int length); #endif void NET_SendPacket(cluster_t *cluster, SOCKET sock, int length, void *data, netadr_t adr) { int ret; int alen; #ifdef LIBQTV if (((struct sockaddr *)&adr.sockaddr)->sa_family == AF_UNSPEC) { QTV_DoReceive(data, length); return; } #endif #ifdef AF_INET6 if (((struct sockaddr *)&adr.sockaddr)->sa_family == AF_INET6) alen = sizeof(struct sockaddr_in6); else #endif alen = sizeof(struct sockaddr_in); if (adr.tcpcon) { tcpconnect_t *dest; for (dest = cluster->tcpconnects; dest; dest = dest->next) { if (dest == adr.tcpcon) break; } if (dest) { int l; if (dest->websocket.websocket) { int datatype = 2; //1=utf-8, 2=binary int enclen = 0, c; if (datatype == 2) enclen = length; else { for (c = 0; c < length; c++) { if (((unsigned char*)data)[c] == 0 || ((unsigned char*)data)[c] >= 0x80) enclen += 2; else enclen += 1; } } if (dest->outbuffersize + 4+enclen < sizeof(dest->outbuffer)) { if (enclen >= 126) { dest->outbuffer[dest->outbuffersize++] = 0x80|datatype; dest->outbuffer[dest->outbuffersize++] = 126; dest->outbuffer[dest->outbuffersize++] = enclen>>8; dest->outbuffer[dest->outbuffersize++] = enclen; } else { dest->outbuffer[dest->outbuffersize++] = 0x80|datatype; dest->outbuffer[dest->outbuffersize++] = enclen; } if (datatype == 2) { memcpy(dest->outbuffer+dest->outbuffersize, data, enclen); dest->outbuffersize += enclen; } else { while(length-->0) { c = *(unsigned char*)data; data = (char*)data+1; if (!c) c |= 0x100; /*will get truncated at the other end*/ if (c >= 0x80) { dest->outbuffer[dest->outbuffersize++] = 0xc0 | (c>>6); dest->outbuffer[dest->outbuffersize++] = 0x80 | (c & 0x3f); } else dest->outbuffer[dest->outbuffersize++] = c; } } } } else { if (dest->outbuffersize + length < sizeof(dest->outbuffer)) { dest->outbuffer[dest->outbuffersize++] = length>>8; dest->outbuffer[dest->outbuffersize++] = length&0xff; memcpy(dest->outbuffer+dest->outbuffersize, data, length); dest->outbuffersize += length; } } if (dest->outbuffersize) { l = send(dest->sock, dest->outbuffer, dest->outbuffersize, 0); if (l > 0) { memmove(dest->outbuffer, dest->outbuffer+l, dest->outbuffersize-l); dest->outbuffersize-=l; } } } return; } ret = sendto(sock, data, length, 0, (struct sockaddr *)&adr.sockaddr, alen); if (ret < 0) { int er = qerrno; if (er == NET_EWOULDBLOCK || er == NET_EAGAIN) return; Sys_Printf(cluster, "udp send error %i (%s)\n", er, strerror(er)); } } #if 0 int Netchan_IsLocal (netadr_t adr) { struct sockaddr_in *sadr = (struct sockaddr_in *)&adr; unsigned char *bytes; switch(((struct sockaddr *)&adr)->sa_family) { case AF_INET: bytes = (unsigned char *)&((struct sockaddr_in *)&adr)->sin_addr; if (bytes[0] == 127 && /*actualy, it should be only the first octet, but hey*/ bytes[1] == 0 && bytes[2] == 0 && bytes[3] == 1) return true; return false; case AF_INET6: bytes = (unsigned char *)&((struct sockaddr_in6 *)&adr)->sin6_addr; if (bytes[ 0] == 0 && bytes[ 1] == 0 && bytes[ 2] == 0 && bytes[ 3] == 0 && bytes[ 4] == 0 && bytes[ 5] == 0 && bytes[ 6] == 0 && bytes[ 7] == 0 && bytes[ 8] == 0 && bytes[ 9] == 0 && bytes[10] == 0 && bytes[11] == 0 && bytes[12] == 0 && bytes[13] == 0 && bytes[14] == 0 && bytes[15] == 1) return true; return false; default: return false; } } #endif #define PACKET_HEADER 8 /* packet header ------------- 31 sequence 1 does this message contain a reliable payload 31 acknowledge sequence 1 acknowledge receipt of even/odd message 16 qport The remote connection never knows if it missed a reliable message, the local side detects that it has been dropped by seeing a sequence acknowledge higher than the last reliable sequence, but without the correct even/odd bit for the reliable set. If the sender notices that a reliable message has been dropped, it will be retransmitted. It will not be retransmitted again until a message after the retransmit has been acknowledged and the reliable still failed to get there. If the sequence number is -1, the packet should be handled without a netcon. The reliable message can be added to at any time by doing MSG_Write* (&netchan->message, ). If the message buffer is overflowed, either by a single message, or by multiple frames worth piling up while the last reliable transmit goes unacknowledged, the netchan signals a fatal error. Reliable messages are always placed first in a packet, then the unreliable message is included if there is sufficient room. To the receiver, there is no distinction between the reliable and unreliable parts of the message, they are just processed out as a single larger message. Illogical packet sequence numbers cause the packet to be dropped, but do not kill the connection. This, combined with the tight window of valid reliable acknowledgement numbers provides protection against malicious address spoofing. The qport field is a workaround for bad address translating routers that sometimes remap the client's source port on a packet during gameplay. If the base part of the net address matches and the qport matches, then the channel matches even if the IP port differs. The IP port should be updated to the new value before sending out any replies. */ /* =============== Netchan_OutOfBand Sends an out-of-band datagram ================ */ void Netchan_OutOfBandSocket (cluster_t *cluster, SOCKET sock, netadr_t *adr, int length, void *data) { netmsg_t send; unsigned char send_buf[MAX_MSGLEN + PACKET_HEADER]; // write the packet header InitNetMsg (&send, send_buf, sizeof(send_buf)); WriteLong (&send, -1); // -1 sequence means out of band WriteData (&send, data, length); // send the datagram NET_SendPacket (cluster, sock, send.cursize, send.data, *adr); } /* =============== Netchan_OutOfBand Sends an out-of-band datagram ================ */ void Netchan_OutOfBand (cluster_t *cluster, netadr_t adr, int length, void *data) { netadr_t realadr; Netchan_OutOfBandSocket(cluster, NET_ChooseSocket(cluster->qwdsocket, &realadr, adr), &realadr, length, data); } /* =============== Netchan_OutOfBandPrint Sends a text message in an out-of-band datagram ================ */ void Netchan_OutOfBandPrint (cluster_t *cluster, netadr_t adr, char *format, ...) { va_list argptr; char string[8192]; va_start (argptr, format); #ifdef _WIN32 _vsnprintf (string, sizeof(string) - 1, format, argptr); string[sizeof(string) - 1] = '\0'; #else vsnprintf (string, sizeof(string), format, argptr); #endif // _WIN32 va_end (argptr); Netchan_OutOfBandSocket(cluster, NET_ChooseSocket(cluster->qwdsocket, &adr, adr), &adr, strlen(string), (unsigned char *)string); } /* =============== Netchan_Init =============== */ void Netchan_Init (netadr_t adr) { } /* ============== Netchan_Setup called to open a channel to a remote system ============== */ void Netchan_Setup (SOCKET sock, netchan_t *chan, netadr_t adr, int qport, qboolean isclient) { memset (chan, 0, sizeof(*chan)); chan->sock = sock; memcpy(&chan->remote_address, &adr, sizeof(netadr_t)); chan->qport = qport; chan->isclient = isclient; chan->last_received = curtime; InitNetMsg(&chan->message, chan->message_buf, sizeof(chan->message_buf)); chan->message.allowoverflow = true; chan->rate = 10000*1000; } /* =============== Netchan_CanPacket Returns true if the bandwidth choke isn't active ================ */ qboolean Netchan_CanPacket (netchan_t *chan) { unsigned int t; // unlimited bandwidth for local client // if (chan->remote_address.type == NA_LOOPBACK) // return true; t = curtime; if (chan->cleartime < t) return true; return false; } /* =============== Netchan_CanReliable Returns true if the bandwidth choke isn't ================ */ qboolean Netchan_CanReliable (netchan_t *chan) { if (chan->reliable_length) return false; // waiting for ack return Netchan_CanPacket (chan); } /* =============== Netchan_Transmit tries to send an unreliable message to a connection, and handles the transmition / retransmition of the reliable messages. A 0 length will still generate a packet and deal with the reliable messages. ================ */ void Netchan_Transmit (cluster_t *cluster, netchan_t *chan, int length, const void *data) { unsigned int t; netmsg_t send; unsigned char send_buf[MAX_NQMSGLEN + PACKET_HEADER]; qboolean send_reliable; unsigned w1, w2; if (chan->isnqprotocol) { int i; send.data = send_buf; send.maxsize = MAX_NQMSGLEN + PACKET_HEADER; send.cursize = 0; if (!chan->reliable_length && chan->message.cursize) { memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize); chan->reliable_length = chan->message.cursize; chan->reliable_start = 0; chan->message.cursize = 0; } i = chan->reliable_length - chan->reliable_start; if (i>0) { WriteLong(&send, 0); WriteLong(&send, SwapLong(chan->reliable_sequence)); if (i > MAX_NQDATAGRAM) i = MAX_NQDATAGRAM; WriteData (&send, chan->reliable_buf+chan->reliable_start, i); // if (length && send.cursize + length < send.maxsize) // { //throw the unreliable packet into the same one as the reliable (but not sent reliably) // WriteData (&send, data, length); // length = 0; // } if (chan->reliable_start+i == chan->reliable_length) *(int*)send_buf = BigLong(NETFLAG_DATA | NETFLAG_EOM | send.cursize); else *(int*)send_buf = BigLong(NETFLAG_DATA | send.cursize); NET_SendPacket(cluster, chan->sock, send.cursize, send.data, chan->remote_address); send.cursize = 0; if (chan->cleartime < curtime) chan->cleartime = curtime + (int)(send.cursize*chan->rate); else chan->cleartime += (int)(send.cursize*chan->rate); } // else if (!length) // { // length = 1; // data = "\x01"; // } //send out the unreliable (if still unsent) if (length) { WriteLong(&send, 0); WriteLong(&send, SwapLong(chan->outgoing_unreliable)); chan->outgoing_unreliable++; WriteData (&send, data, length); *(int*)send_buf = BigLong(NETFLAG_UNRELIABLE | send.cursize); NET_SendPacket (cluster, chan->sock, send.cursize, send.data, chan->remote_address); if (chan->cleartime < curtime) chan->cleartime = (int)(curtime + send.cursize*chan->rate); else chan->cleartime += (int)(send.cursize*chan->rate); send.cursize = 0; } return; } // check for message overflow if (chan->message.overflowed) { chan->drop = true; // printf ("%s:Outgoing message overflow\n" // , NET_AdrToString (chan->remote_address)); return; } // if the remote side dropped the last reliable message, resend it send_reliable = false; if (chan->incoming_acknowledged > chan->last_reliable_sequence && chan->incoming_reliable_acknowledged != chan->reliable_sequence) send_reliable = true; // if the reliable transmit buffer is empty, copy the current message out if (!chan->reliable_length && chan->message.cursize) { memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize); chan->reliable_length = chan->message.cursize; chan->message.cursize = 0; chan->reliable_sequence ^= 1; send_reliable = true; } // write the packet header send.data = send_buf; send.maxsize = sizeof(send_buf); send.readpos = send.cursize = 0; w1 = chan->outgoing_sequence | (send_reliable<<31); w2 = chan->incoming_sequence | (chan->incoming_reliable_sequence<<31); chan->outgoing_sequence++; WriteLong (&send, w1); WriteLong (&send, w2); // send the qport if we are a client if (chan->isclient) WriteShort (&send, chan->qport); // copy the reliable message to the packet first if (send_reliable) { WriteData (&send, chan->reliable_buf, chan->reliable_length); chan->last_reliable_sequence = chan->outgoing_sequence; } // add the unreliable part if space is available if (send.maxsize - send.cursize >= length) WriteData (&send, data, length); // send the datagram // i = chan->outgoing_sequence & (MAX_LATENT-1); // chan->outgoing_size[i] = send.cursize; // chan->outgoing_time[i] = curtime; NET_SendPacket (cluster, chan->sock, send.cursize, send.data, chan->remote_address); t = curtime; if (chan->cleartime < t) chan->cleartime = t + (int)(send.cursize*chan->rate); else chan->cleartime += (int)(send.cursize*chan->rate); #ifndef CLIENTONLY // if (chan->sock == NS_SERVER && sv_paused.value) // chan->cleartime = curtime; #endif /* if (showpackets.value) Com_Printf ("--> s=%i(%i) a=%i(%i) %i\n" , chan->outgoing_sequence , send_reliable , chan->incoming_sequence , chan->incoming_reliable_sequence , send.cursize); */ } qboolean NQNetchan_Process(cluster_t *cluster, netchan_t *chan, netmsg_t *msg) { int header; int sequence; int drop; msg->readpos = 0; header = SwapLong(ReadLong(msg)); if (msg->cursize != (header & NETFLAG_LENGTH_MASK)) return false; //size was wrong, couldn't have been ours. if (header & NETFLAG_CTL) return false; //huh? sequence = SwapLong(ReadLong(msg)); if (header & NETFLAG_ACK) { if (sequence == chan->reliable_sequence) { chan->reliable_start += MAX_NQDATAGRAM; if (chan->reliable_start >= chan->reliable_length) { chan->reliable_length = 0; //they got the entire message chan->reliable_start = 0; } chan->incoming_reliable_acknowledged = chan->reliable_sequence; chan->reliable_sequence++; chan->last_received = curtime; } // else if (sequence < chan->reliable_sequence) // Con_DPrintf("Stale ack recieved\n"); // else if (sequence > chan->reliable_sequence) // Con_Printf("Future ack recieved\n"); return false; //don't try execing the 'payload'. I hate ack packets. } if (header & NETFLAG_UNRELIABLE) { if (sequence < chan->incoming_unreliable) { // Con_DPrintf("Stale datagram recieved\n"); return false; } drop = sequence - chan->incoming_unreliable - 1; if (drop > 0) { // Con_DPrintf("Dropped %i datagrams\n", drop); // chan->drop_count += drop; } chan->incoming_unreliable = sequence; chan->last_received = curtime; chan->incoming_acknowledged++; // chan->good_count++; return 1; } if (header & NETFLAG_DATA) { int runt[2]; //always reply. a stale sequence probably means our ack got lost. runt[0] = BigLong(NETFLAG_ACK | 8); runt[1] = BigLong(sequence); NET_SendPacket (cluster, chan->sock, 8, (void*)runt, chan->remote_address); chan->last_received = curtime; if (sequence == chan->incoming_reliable_sequence) { chan->incoming_reliable_sequence++; if (chan->in_fragment_length + msg->cursize-8 >= sizeof(chan->in_fragment_buf)) { chan->drop = true; return false; } memcpy(chan->in_fragment_buf + chan->in_fragment_length, (char*)msg->data+8, msg->cursize-8); chan->in_fragment_length += msg->cursize-8; if (header & NETFLAG_EOM) { msg->cursize = 0; WriteData(msg, chan->in_fragment_buf, chan->in_fragment_length); chan->in_fragment_length = 0; msg->readpos = 0; return 2; //we can read it now } } // else // Con_DPrintf("Stale reliable (%i)\n", sequence); return false; } return false; //not supported. } /* ================= Netchan_Process called when the current net_message is from remote_address modifies net_message so that it points to the packet payload ================= */ qboolean Netchan_Process (netchan_t *chan, netmsg_t *msg) { unsigned sequence, sequence_ack; unsigned reliable_ack, reliable_message; // get sequence numbers msg->readpos = 0; sequence = ReadLong (msg); sequence_ack = ReadLong (msg); // read the qport if we are a server if (!chan->isclient) if (chan->qport != ReadShort (msg)) return false; reliable_message = sequence >> 31; reliable_ack = sequence_ack >> 31; sequence &= ~(1<<31); sequence_ack &= ~(1<<31); /* if (showpackets.value) Com_Printf ("<-- s=%i(%i) a=%i(%i) %i\n" , sequence , reliable_message , sequence_ack , reliable_ack , net_message.cursize); */ // // discard stale or duplicated packets // if (sequence <= (unsigned)chan->incoming_sequence) { /* if (showdrop.value) Com_Printf ("%s:Out of order packet %i at %i\n" , NET_AdrToString (chan->remote_address) , sequence , chan->incoming_sequence); */ return false; } // // dropped packets don't keep the message from being used // /* chan->dropped = sequence - (chan->incoming_sequence+1); if (chan->dropped > 0) { chan->drop_count += 1; if (showdrop.value) Com_Printf ("%s:Dropped %i packets at %i\n" , NET_AdrToString (chan->remote_address) , chan->dropped , sequence); } */ // // if the current outgoing reliable message has been acknowledged // clear the buffer to make way for the next // if (reliable_ack == (unsigned)chan->reliable_sequence) chan->reliable_length = 0; // it has been received // // if this message contains a reliable message, bump incoming_reliable_sequence // chan->incoming_sequence = sequence; chan->incoming_acknowledged = sequence_ack; chan->incoming_reliable_acknowledged = reliable_ack; if (reliable_message) chan->incoming_reliable_sequence ^= 1; // // the message can now be read from the current message pointer // update statistics counters // // chan->frame_latency = chan->frame_latency*OLD_AVG // + (chan->outgoing_sequence-sequence_ack)*(1.0-OLD_AVG); // chan->frame_rate = chan->frame_rate*OLD_AVG // + (curtime - chan->last_received)*(1.0-OLD_AVG); // chan->good_count += 1; chan->last_received = curtime; return true; }