Non-Functional voice communication.

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@16 fc73d0e0-1445-4013-8a0c-d673dee63da5
This commit is contained in:
Spoike 2004-08-23 01:36:14 +00:00
parent 8184225473
commit 7f00235804
9 changed files with 2137 additions and 0 deletions

288
engine/sndcodec/g711.c Normal file
View File

@ -0,0 +1,288 @@
#include "bothdefs.h"
#ifdef VOICECHAT
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g711.c
*
* u-law, A-law and linear PCM conversions.
*/
#define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
#define QUANT_MASK (0xf) /* Quantization field mask. */
#define NSEGS (8) /* Number of A-law segments. */
#define SEG_SHIFT (4) /* Left shift for segment number. */
#define SEG_MASK (0x70) /* Segment field mask. */
static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
/* copy from CCITT G.711 specifications */
unsigned char _u2a[128] = { /* u- to A-law conversions */
1, 1, 2, 2, 3, 3, 4, 4,
5, 5, 6, 6, 7, 7, 8, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 29, 31, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44,
46, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128};
unsigned char _a2u[128] = { /* A- to u-law conversions */
1, 3, 5, 7, 9, 11, 13, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 48, 49, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 64,
65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127};
static int
search(
int val,
short *table,
int size)
{
int i;
for (i = 0; i < size; i++) {
if (val <= *table++)
return (i);
}
return (size);
}
/*
* linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
*
* linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
*
* Linear Input Code Compressed Code
* ------------------------ ---------------
* 0000000wxyza 000wxyz
* 0000001wxyza 001wxyz
* 000001wxyzab 010wxyz
* 00001wxyzabc 011wxyz
* 0001wxyzabcd 100wxyz
* 001wxyzabcde 101wxyz
* 01wxyzabcdef 110wxyz
* 1wxyzabcdefg 111wxyz
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
unsigned char
linear2alaw(
int pcm_val) /* 2's complement (16-bit range) */
{
int mask;
int seg;
unsigned char aval;
if (pcm_val >= 0) {
mask = 0xD5; /* sign (7th) bit = 1 */
} else {
mask = 0x55; /* sign bit = 0 */
pcm_val = -pcm_val - 8;
}
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_end, 8);
/* Combine the sign, segment, and quantization bits. */
if (seg >= 8) /* out of range, return maximum value. */
return (0x7F ^ mask);
else {
aval = seg << SEG_SHIFT;
if (seg < 2)
aval |= (pcm_val >> 4) & QUANT_MASK;
else
aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
return (aval ^ mask);
}
}
/*
* alaw2linear() - Convert an A-law value to 16-bit linear PCM
*
*/
int
alaw2linear(
unsigned char a_val)
{
int t;
int seg;
a_val ^= 0x55;
t = (a_val & QUANT_MASK) << 4;
seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
switch (seg) {
case 0:
t += 8;
break;
case 1:
t += 0x108;
break;
default:
t += 0x108;
t <<= seg - 1;
}
return ((a_val & SIGN_BIT) ? t : -t);
}
#define BIAS (0x84) /* Bias for linear code. */
/*
* linear2ulaw() - Convert a linear PCM value to u-law
*
* In order to simplify the encoding process, the original linear magnitude
* is biased by adding 33 which shifts the encoding range from (0 - 8158) to
* (33 - 8191). The result can be seen in the following encoding table:
*
* Biased Linear Input Code Compressed Code
* ------------------------ ---------------
* 00000001wxyza 000wxyz
* 0000001wxyzab 001wxyz
* 000001wxyzabc 010wxyz
* 00001wxyzabcd 011wxyz
* 0001wxyzabcde 100wxyz
* 001wxyzabcdef 101wxyz
* 01wxyzabcdefg 110wxyz
* 1wxyzabcdefgh 111wxyz
*
* Each biased linear code has a leading 1 which identifies the segment
* number. The value of the segment number is equal to 7 minus the number
* of leading 0's. The quantization interval is directly available as the
* four bits wxyz. * The trailing bits (a - h) are ignored.
*
* Ordinarily the complement of the resulting code word is used for
* transmission, and so the code word is complemented before it is returned.
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
unsigned char
linear2ulaw(
int pcm_val) /* 2's complement (16-bit range) */
{
int mask;
int seg;
unsigned char uval;
/* Get the sign and the magnitude of the value. */
if (pcm_val < 0) {
pcm_val = BIAS - pcm_val;
mask = 0x7F;
} else {
pcm_val += BIAS;
mask = 0xFF;
}
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_end, 8);
/*
* Combine the sign, segment, quantization bits;
* and complement the code word.
*/
if (seg >= 8) /* out of range, return maximum value. */
return (0x7F ^ mask);
else {
uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
return (uval ^ mask);
}
}
/*
* ulaw2linear() - Convert a u-law value to 16-bit linear PCM
*
* First, a biased linear code is derived from the code word. An unbiased
* output can then be obtained by subtracting 33 from the biased code.
*
* Note that this function expects to be passed the complement of the
* original code word. This is in keeping with ISDN conventions.
*/
int
ulaw2linear(
unsigned char u_val)
{
int t;
/* Complement to obtain normal u-law value. */
u_val = ~u_val;
/*
* Extract and bias the quantization bits. Then
* shift up by the segment number and subtract out the bias.
*/
t = ((u_val & QUANT_MASK) << 3) + BIAS;
t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
}
/* A-law to u-law conversion */
unsigned char
alaw2ulaw(
unsigned char aval)
{
aval &= 0xff;
return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
(0x7F ^ _a2u[aval ^ 0x55]));
}
/* u-law to A-law conversion */
unsigned char
ulaw2alaw(
unsigned char uval)
{
uval &= 0xff;
return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
(0x55 ^ (_u2a[0x7F ^ uval] - 1)));
}
#endif

178
engine/sndcodec/g721.c Normal file
View File

@ -0,0 +1,178 @@
#include "bothdefs.h"
#ifdef VOICECHAT
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g721.c
*
* Description:
*
* g721_encoder(), g721_decoder()
*
* These routines comprise an implementation of the CCITT G.721 ADPCM
* coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which
* take advantage of work station attributes, such as hardware 2's
* complement arithmetic and large memory. Specifically, certain time
* consuming operations such as multiplications are replaced
* with lookup tables and software 2's complement operations are
* replaced with hardware 2's complement.
*
* The deviation from the bit level specification (lookup tables)
* preserves the bit level performance specifications.
*
* As outlined in the G.721 Recommendation, the algorithm is broken
* down into modules. Each section of code below is preceded by
* the name of the module which it is implementing.
*
*/
#include "g72x.h"
static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048};
/* Maps G.721 code word to log of scale factor multiplier. */
static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12};
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
/*
* g721_encoder()
*
* Encodes the input vale of linear PCM, A-law or u-law data sl and returns
* the resulting code. -1 is returned for unknown input coding value.
*/
int
g721_encoder(
int sl,
int in_coding,
struct g72x_state *state_ptr)
{
short sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short sr; /* ADDB */
short y; /* MIX */
short dqsez; /* ADDC */
short dq, i;
switch (in_coding) { /* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl = alaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl = ulaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* 14-bit dynamic range */
break;
default:
return (-1);
}
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr + sez - se; /* pole prediction diff. */
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g721_decoder()
*
* Description:
*
* Decodes a 4-bit code of G.721 encoded data of i and
* returns the resulting linear PCM, A-law or u-law value.
* return -1 for unknown out_coding value.
*/
int
g721_decoder(
int i,
int out_coding,
struct g72x_state *state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x0f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
switch (out_coding) {
case AUDIO_ENCODING_ALAW:
return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));
case AUDIO_ENCODING_ULAW:
return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));
case AUDIO_ENCODING_LINEAR:
return (sr << 2); /* sr was 14-bit dynamic range */
default:
return (-1);
}
}
#endif

163
engine/sndcodec/g723_24.c Normal file
View File

@ -0,0 +1,163 @@
#include "bothdefs.h"
#ifdef VOICECHAT
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g723_24.c
*
* Description:
*
* g723_24_encoder(), g723_24_decoder()
*
* These routines comprise an implementation of the CCITT G.723 24 Kbps
* ADPCM coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which take advantage
* of workstation attributes, such as hardware 2's complement arithmetic.
*
*/
#include "g72x.h"
/*
* Maps G.723_24 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048};
/* Maps G.723_24 code word to log of scale factor multiplier. */
static short _witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128};
/*
* Maps G.723_24 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};
static short qtab_723_24[3] = {8, 218, 331};
/*
* g723_24_encoder()
*
* Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
* Returns -1 if invalid input coding value.
*/
int
g723_24_encoder(
int sl,
int in_coding,
struct g72x_state *state_ptr)
{
short sei, sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short y; /* MIX */
short sr; /* ADDB */
short dqsez; /* ADDC */
short dq, i;
switch (in_coding) { /* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl = alaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl = ulaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* sl of 14-bit dynamic range */
break;
default:
return (-1);
}
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
d = sl - se; /* d = estimation diff. */
/* quantize prediction difference d */
y = step_size(state_ptr); /* quantizer step size */
i = quantize(d, y, qtab_723_24, 3); /* i = ADPCM code */
dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */
dqsez = sr + sez - se; /* pole prediction diff. */
update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g723_24_decoder()
*
* Decodes a 3-bit CCITT G.723_24 ADPCM code and returns
* the resulting 16-bit linear PCM, A-law or u-law sample value.
* -1 is returned if the output coding is unknown.
*/
int
g723_24_decoder(
int i,
int out_coding,
struct g72x_state *state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x07; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* adaptive quantizer step size */
dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
switch (out_coding) {
case AUDIO_ENCODING_ALAW:
return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24));
case AUDIO_ENCODING_ULAW:
return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24));
case AUDIO_ENCODING_LINEAR:
return (sr << 2); /* sr was of 14-bit dynamic range */
default:
return (-1);
}
}
#endif

183
engine/sndcodec/g723_40.c Normal file
View File

@ -0,0 +1,183 @@
#include "bothdefs.h"
#ifdef VOICECHAT
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g723_40.c
*
* Description:
*
* g723_40_encoder(), g723_40_decoder()
*
* These routines comprise an implementation of the CCITT G.723 40Kbps
* ADPCM coding algorithm. Essentially, this implementation is identical to
* the bit level description except for a few deviations which
* take advantage of workstation attributes, such as hardware 2's
* complement arithmetic.
*
* The deviation from the bit level specification (lookup tables),
* preserves the bit level performance specifications.
*
* As outlined in the G.723 Recommendation, the algorithm is broken
* down into modules. Each section of code below is preceded by
* the name of the module which it is implementing.
*
*/
#include "g72x.h"
/*
* Maps G.723_40 code word to ructeconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318,
358, 395, 429, 459, 488, 514, 539, 566,
566, 539, 514, 488, 459, 429, 395, 358,
318, 274, 224, 169, 104, 28, -66, -2048};
/* Maps G.723_40 code word to log of scale factor multiplier. */
static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200,
4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
3200, 1856, 1312, 1280, 1248, 768, 448, 448};
/*
* Maps G.723_40 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
0x200, 0x200, 0x200, 0, 0, 0, 0, 0};
static short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339,
378, 413, 445, 475, 502, 528, 553};
/*
* g723_40_encoder()
*
* Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
* the resulting 5-bit CCITT G.723 40Kbps code.
* Returns -1 if the input coding value is invalid.
*/
int
g723_40_encoder(
int sl,
int in_coding,
struct g72x_state *state_ptr)
{
short sei, sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short y; /* MIX */
short sr; /* ADDB */
short dqsez; /* ADDC */
short dq, i;
switch (in_coding) { /* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl = alaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl = ulaw2linear((unsigned char)sl) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* sl of 14-bit dynamic range */
break;
default:
return (-1);
}
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
d = sl - se; /* d = estimation difference */
/* quantize prediction difference */
y = step_size(state_ptr); /* adaptive quantizer step size */
i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */
dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */
sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */
dqsez = sr + sez - se; /* dqsez = pole prediction diff. */
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g723_40_decoder()
*
* Decodes a 5-bit CCITT G.723 40Kbps code and returns
* the resulting 16-bit linear PCM, A-law or u-law sample value.
* -1 is returned if the output coding is unknown.
*/
int
g723_40_decoder(
int i,
int out_coding,
struct g72x_state *state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x1f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* adaptive quantizer step size */
dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */
sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
switch (out_coding) {
case AUDIO_ENCODING_ALAW:
return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40));
case AUDIO_ENCODING_ULAW:
return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40));
case AUDIO_ENCODING_LINEAR:
return (sr << 2); /* sr was of 14-bit dynamic range */
default:
return (-1);
}
}
#endif

573
engine/sndcodec/g72x.c Normal file
View File

@ -0,0 +1,573 @@
#include "bothdefs.h"
#ifdef VOICECHAT
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.c
*
* Common routines for G.721 and G.723 conversions.
*/
#include "g72x.h"
#include <math.h>
#include <stdlib.h>
static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
/*
* quan()
*
* quantizes the input val against the table of size short integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static int
quan(
int val,
short *table,
int size)
{
int i;
for (i = 0; i < size; i++)
if (val < *table++)
break;
return (i);
}
/*
* fmult()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static int
fmult(
int an,
int srn)
{
short anmag, anexp, anmant;
short wanexp, wanmant;
short retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g72x_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
void
g72x_init_state(
struct g72x_state *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
for (cnta = 0; cnta < 6; cnta++) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
}
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
int
predictor_zero(
struct g72x_state *state_ptr)
{
int i;
int sezi;
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
for (i = 1; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return (sezi);
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
int
predictor_pole(
struct g72x_state *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
}
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
int
step_size(
struct g72x_state *state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
int
quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size) /* table size of short integers */
{
short dqm; /* Magnitude of 'd' */
short exp; /* Integer part of base 2 log of 'd' */
short mant; /* Fractional part of base 2 log */
short dl; /* Log of magnitude of 'd' */
short dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
exp = quan(dqm >> 1, power2, 15);
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) + mant;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
int
reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
return ((sign) ? -0x8000 : 0);
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
dq = (dqt << 7) >> (14 - dex);
return ((sign) ? (dq - 0x8000) : dq);
}
}
/*
* update()
*
* updates the state variables for each output code
*/
void
update(
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g72x_state *state_ptr) /* coder state pointer */
{
int cnt;
short mag, exp; /* Adaptive predictor, FLOAT A */
short a2p; /* LIMC */
short a1ul; /* UPA1 */
short pks1; /* UPA2 */
short fa1;
char tr; /* tone/transition detector */
short ylint, thr2, dqthr;
short ylfrac, thr1;
short pk0;
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
mag = dq & 0x7FFF; /* prediction difference magnitude */
/* TRANS */
ylint = (short)(state_ptr->yl >> 15); /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5);
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
if (dqsez != 0) {
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100;
else if (fa1 > 8191)
a2p += 0xFF;
else
a2p += fa1 >> 5;
if (pk0 ^ state_ptr->pk[1])
/* LIMC */
if (a2p <= -12160)
a2p = -12288;
else if (a2p >= 12416)
a2p = 12288;
else
a2p -= 0x80;
else if (a2p <= -12416)
a2p = -12288;
else if (a2p >= 12160)
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if (dqsez != 0)
{
if (pks1 == 0)
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if (state_ptr->a[0] < -a1ul)
state_ptr->a[0] = -a1ul;
else if (state_ptr->a[0] > a1ul)
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
for (cnt = 0; cnt < 6; cnt++) {
if (code_size == 5) /* for 40Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
if (dq & 0x7FFF) { /* XOR */
if ((dq ^ state_ptr->dq[cnt]) >= 0)
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
for (cnt = 5; cnt > 0; cnt--)
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0) {
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
} else {
exp = quan(mag, power2, 15);
state_ptr->dq[0] = (dq >= 0) ?
(exp << 6) + ((mag << 6) >> exp) :
(exp << 6) + ((mag << 6) >> exp) - 0x400;
}
state_ptr->sr[1] = state_ptr->sr[0];
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0) {
state_ptr->sr[0] = 0x20;
} else if (sr > 0) {
exp = quan(sr, power2, 15);
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
} else if (sr > -32768) {
mag = -sr;
exp = quan(mag, power2, 15);
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
} else
state_ptr->sr[0] = (short)0xFC20;
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
if (tr == 1)
state_ptr->ap = 256;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
(state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else
state_ptr->ap += (-state_ptr->ap) >> 4;
}
/*
* tandem_adjust(sr, se, y, i, sign)
*
* At the end of ADPCM decoding, it simulates an encoder which may be receiving
* the output of this decoder as a tandem process. If the output of the
* simulated encoder differs from the input to this decoder, the decoder output
* is adjusted by one level of A-law or u-law codes.
*
* Input:
* sr decoder output linear PCM sample,
* se predictor estimate sample,
* y quantizer step size,
* i decoder input code,
* sign sign bit of code i
*
* Return:
* adjusted A-law or u-law compressed sample.
*/
int
tandem_adjust_alaw(
int sr, /* decoder output linear PCM sample */
int se, /* predictor estimate sample */
int y, /* quantizer step size */
int i, /* decoder input code */
int sign,
short *qtab)
{
unsigned char sp; /* A-law compressed 8-bit code */
short dx; /* prediction error */
char id; /* quantized prediction error */
int sd; /* adjusted A-law decoded sample value */
int im; /* biased magnitude of i */
int imx; /* biased magnitude of id */
if (sr <= -32768)
sr = -1;
sp = linear2alaw((sr >> 1) << 3); /* short to A-law compression */
dx = (alaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
id = quantize(dx, y, qtab, sign - 1);
if (id == i) { /* no adjustment on sp */
return (sp);
} else { /* sp adjustment needed */
/* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
im = i ^ sign; /* 2's complement to biased unsigned */
imx = id ^ sign;
if (imx > im) { /* sp adjusted to next lower value */
if (sp & 0x80) {
sd = (sp == 0xD5) ? 0x55 :
((sp ^ 0x55) - 1) ^ 0x55;
} else {
sd = (sp == 0x2A) ? 0x2A :
((sp ^ 0x55) + 1) ^ 0x55;
}
} else { /* sp adjusted to next higher value */
if (sp & 0x80)
sd = (sp == 0xAA) ? 0xAA :
((sp ^ 0x55) + 1) ^ 0x55;
else
sd = (sp == 0x55) ? 0xD5 :
((sp ^ 0x55) - 1) ^ 0x55;
}
return (sd);
}
}
int
tandem_adjust_ulaw(
int sr, /* decoder output linear PCM sample */
int se, /* predictor estimate sample */
int y, /* quantizer step size */
int i, /* decoder input code */
int sign,
short *qtab)
{
unsigned char sp; /* u-law compressed 8-bit code */
short dx; /* prediction error */
char id; /* quantized prediction error */
int sd; /* adjusted u-law decoded sample value */
int im; /* biased magnitude of i */
int imx; /* biased magnitude of id */
if (sr <= -32768)
sr = 0;
sp = linear2ulaw(sr << 2); /* short to u-law compression */
dx = (ulaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
id = quantize(dx, y, qtab, sign - 1);
if (id == i) {
return (sp);
} else {
/* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
im = i ^ sign; /* 2's complement to biased unsigned */
imx = id ^ sign;
if (imx > im) { /* sp adjusted to next lower value */
if (sp & 0x80)
sd = (sp == 0xFF) ? 0x7E : sp + 1;
else
sd = (sp == 0) ? 0 : sp - 1;
} else { /* sp adjusted to next higher value */
if (sp & 0x80)
sd = (sp == 0x80) ? 0x80 : sp - 1;
else
sd = (sp == 0x7F) ? 0xFE : sp + 1;
}
return (sd);
}
}
#endif

118
engine/sndcodec/g72x.h Normal file
View File

@ -0,0 +1,118 @@
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.h
*
* Header file for CCITT conversion routines.
*
*/
#ifndef _G72X_H
#define _G72X_H
#define AUDIO_ENCODING_ULAW (1) /* ISDN u-law */
#define AUDIO_ENCODING_ALAW (2) /* ISDN A-law */
#define AUDIO_ENCODING_LINEAR (3) /* PCM 2's-complement (0-center) */
/*
* The following is the definition of the state structure
* used by the G.721/G.723 encoder and decoder to preserve their internal
* state between successive calls. The meanings of the majority
* of the state structure fields are explained in detail in the
* CCITT Recommendation G.721. The field names are essentially indentical
* to variable names in the bit level description of the coding algorithm
* included in this Recommendation.
*/
struct g72x_state {
long yl; /* Locked or steady state step size multiplier. */
short yu; /* Unlocked or non-steady state step size multiplier. */
short dms; /* Short term energy estimate. */
short dml; /* Long term energy estimate. */
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
short a[2]; /* Coefficients of pole portion of prediction filter. */
short b[6]; /* Coefficients of zero portion of prediction filter. */
short pk[2]; /*
* Signs of previous two samples of a partially
* reconstructed signal.
*/
short dq[6]; /*
* Previous 6 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
short sr[2]; /*
* Previous 2 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
char td; /* delayed tone detect, new in 1988 version */
};
/* External function definitions. */
extern void g72x_init_state(struct g72x_state *);
extern int g721_encoder(
int sample,
int in_coding,
struct g72x_state *state_ptr);
extern int g721_decoder(
int code,
int out_coding,
struct g72x_state *state_ptr);
extern int g723_24_encoder(
int sample,
int in_coding,
struct g72x_state *state_ptr);
extern int g723_24_decoder(
int code,
int out_coding,
struct g72x_state *state_ptr);
extern int g723_40_encoder(
int sample,
int in_coding,
struct g72x_state *state_ptr);
extern int g723_40_decoder(
int code,
int out_coding,
struct g72x_state *state_ptr);
//see the function bodies for a description
unsigned char linear2alaw(int pcm_val);
unsigned char linear2ulaw(int pcm_val);
int ulaw2linear(unsigned char u_val);
int alaw2linear(unsigned char a_val);
int predictor_zero(struct g72x_state *state_ptr);
int predictor_pole(struct g72x_state *state_ptr);
int step_size(struct g72x_state *state_ptr);
int quantize(int d, int y, short *table, int size);
int reconstruct(int sign, int dqln, int y);
void update(int code_size, int y, int wi, int fi, int dq, int sr, int dqsez, struct g72x_state *state_ptr);
int tandem_adjust_ulaw(int sr, int se, int y, int i, int sign, short *qtab);
int tandem_adjust_alaw(int sr, int se, int y, int i, int sign, short *qtab);
#endif /* !_G72X_H */

436
engine/sndcodec/snd_vc.c Normal file
View File

@ -0,0 +1,436 @@
//voice chat routines.
//needs quite a bit of work.
//it needs a proper protocol.
//the server needs to be able to shutdown again.
//options about who gets the sound data is also needed.
#include "bothdefs.h"
#ifdef VOICECHAT
#include "quakedef.h"
#ifdef _WIN32
#include "winquake.h"
#define EWOULDBLOCK WSAEWOULDBLOCK
#define EMSGSIZE WSAEMSGSIZE
#define ECONNRESET WSAECONNRESET
#define ECONNABORTED WSAECONNABORTED
#define ECONNREFUSED WSAECONNREFUSED
#define EADDRNOTAVAIL WSAEADDRNOTAVAIL
#define qerrno WSAGetLastError()
#else
#define qerrno errno
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#include <errno.h>
#include <unistd.h>
#ifdef sun
#include <sys/filio.h>
#endif
#ifdef NeXT
#include <libc.h>
#endif
#define closesocket close
#define ioctlsocket ioctl
#endif
#include "voicechat.h"
static int CLVS_socket;
static int SVVS_socket;
static qboolean SVVS_inited;
static qbyte inputbuffer[44100];
static int readpoint;
static qbyte outputbuffer[44100];
static int sendpoint;
/*
Protocol:
Sound chunk:
(char) data begins with codec id.
(short) followed by number of samples
(short) then size in bytes of chunk.
*/
#ifndef CLIENTONLY
void SVVC_ServerInit(void)
{
netadr_t adr;
struct sockaddr_in address;
unsigned long _true = true;
int i;
int port = PORT_SERVER;
if ((SVVS_socket = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1)
{
Sys_Error ("FTP_TCP_OpenSocket: socket:", strerror(qerrno));
}
if (ioctlsocket (SVVS_socket, FIONBIO, &_true) == -1)
{
Sys_Error ("FTP_TCP_OpenSocket: ioctl FIONBIO:", strerror(qerrno));
}
address.sin_family = AF_INET;
//ZOID -- check for interface binding option
if ((i = COM_CheckParm("-ip")) != 0 && i < com_argc) {
address.sin_addr.s_addr = inet_addr(com_argv[i+1]);
Con_TPrintf(TL_NETBINDINTERFACE,
inet_ntoa(address.sin_addr));
} else
address.sin_addr.s_addr = INADDR_ANY;
if (port == PORT_ANY)
address.sin_port = 0;
else
address.sin_port = htons((short)port);
if( bind (SVVS_socket, (void *)&address, sizeof(address)) == -1)
{
closesocket(SVVS_socket);
return;
}
listen(SVVS_socket, 3);
SVVS_inited = true;
Con_Printf("VC server is running\n");
SockadrToNetadr((struct sockaddr_qstorage*)&address, &adr);
Info_SetValueForKey(svs.info, "voiceaddress", NET_AdrToString(adr), MAX_SERVERINFO_STRING);
return;
}
//currently a dum forwarding/broadcasting mechanism
void SVVC_Frame (qboolean running)
{
struct sockaddr_in frm;
int size = sizeof(frm);
int newcl;
int i, j;
char buffer[1400];
if (!running)
return;
if (!SVVS_socket)
{
SVVC_ServerInit();
return;
}
newcl = accept(SVVS_socket, (struct sockaddr *)&frm, &size);
if (newcl != INVALID_SOCKET)
{
for (i = 0; i < MAX_CLIENTS; i++)
{
if (!svs.clients[i].voicechat.socket) //this really isn't the right way...
{
svs.clients[i].voicechat.socket = newcl;
break;
}
}
}
for (i = 0; i < MAX_CLIENTS; i++)
{
host_client = &svs.clients[i];
if (host_client->voicechat.socket)
{
size = recv(host_client->voicechat.socket, buffer, sizeof(buffer), 0);
if (size > 0)
{
for (j = 0; j < MAX_CLIENTS; j++)
{
if (j != i && svs.clients[j].voicechat.socket) //gotta be capable of receiving, and not the sender (that would be dumb).
send(svs.clients[j].voicechat.socket, buffer, size, 0);
}
}
}
}
}
#endif
#ifndef SERVERONLY
sfxcache_t *voicesoundbuffer[2];
sfx_t recordaudio[2] = {
{"recordaudio1",
{NULL, false},
NULL},
{"recordaudio2",
{NULL, false},
NULL}
};
int audiobuffer;
void SNDVC_Submit(int codec, qbyte *buffer, int samples, int freq, int width)
{
S_RawAudio(0, buffer, freq, samples, 1, width);
/*
soundcardinfo_t *cursndcard;
audiobuffer=0;
if (!recordaudio[audiobuffer].cache.data)
{
voicesoundbuffer[audiobuffer] = BZ_Malloc(44100*2+sizeof(sfxcache_t));
recordaudio[audiobuffer].cache.data = voicesoundbuffer[audiobuffer];
recordaudio[audiobuffer].cache.fake = true;
}
cursndcard = sndcardinfo;
if (!cursndcard)
{
Con_Printf("Accepting voice chat with no sound card\n");
return;
}
voicesoundbuffer[audiobuffer]->length = samples;
voicesoundbuffer[audiobuffer]->stereo = false;
voicesoundbuffer[audiobuffer]->speed = sndcardinfo->sn.speed;
voicesoundbuffer[audiobuffer]->width = width;
voicesoundbuffer[audiobuffer]->loopstart=-1;
// Con_DPrintf("Submit %i\n", (int)samples);
if (codec == 0) //codec 0 is special. (A straight copy)
ResampleSfx(&recordaudio[audiobuffer], freq, width, buffer);
else
{
qbyte *temp = BZ_Malloc(samples*width);
audiocodecs[codec].decode(buffer, (short*)temp, samples);
ResampleSfx(&recordaudio[audiobuffer], freq, width, temp);
BZ_Free(temp);
}
for (cursndcard = sndcardinfo; cursndcard; cursndcard=cursndcard->next)
{
if (0&&cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+1-audiobuffer].sfx == &recordaudio[1-audiobuffer]) //other buffer is playing.
{
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].sfx = &recordaudio[audiobuffer];
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].pos = cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+1-audiobuffer].end - voicesoundbuffer[1-audiobuffer]->length- cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+1-audiobuffer].pos;
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].end = cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].end + samples;
if (cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].pos >= voicesoundbuffer[audiobuffer]->length)
{
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+1-audiobuffer].pos = voicesoundbuffer[1-audiobuffer]->length;
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].pos = 0;
Con_Printf("Sound out of sync\n");
}
}
else
{
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].sfx = &recordaudio[audiobuffer];
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].pos = 0;
cursndcard->channel[MAX_DYNAMIC_CHANNELS + NUM_AMBIENTS+audiobuffer].end = cursndcard->paintedtime + samples;
}
}
audiobuffer = 1-audiobuffer;*/
}
void CLVC_SetServer (char *addy)
{
unsigned long _true = true;
struct sockaddr_qstorage from;
if ((CLVS_socket = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1)
{
Sys_Error ("FTP_UDP_OpenSocket: socket: %s\n", strerror(qerrno));
}
{//quake routines using dns and stuff (Really, I wanna keep quake and ftp fairly seperate)
netadr_t qaddy;
if (!NET_StringToAdr (addy, &qaddy)) //server doesn't exist.
return;
if (qaddy.type != NA_IP) //Only TCP is supported.
return;
if (!qaddy.port)
qaddy.port = htons(PORT_SERVER);
NetadrToSockadr(&qaddy, &from);
}
//not yet non blocking.
if (connect(CLVS_socket, (struct sockaddr*)&from, sizeof(from)) == -1)
{
Con_Printf ("FTP_TCP_OpenSocket: connect: %i %s\n", qerrno, strerror(qerrno));
closesocket(CLVS_socket);
CLVS_socket = 0;
return;
}
if (ioctlsocket (CLVS_socket, FIONBIO, &_true) == -1) //now make it non blocking.
{
Sys_Error ("FTP_TCP_OpenSocket: ioctl FIONBIO: %s\n", strerror(qerrno));
}
}
void CLVC_Disconnect (void)
{
closesocket(CLVS_socket);
CLVS_socket = 0;
}
void CLVC_Poll (void)
{
int codec;
int size;
if (!CLVS_socket)
return;
while (1)
{
size = recv(CLVS_socket, &inputbuffer[readpoint], sizeof(inputbuffer) - readpoint, 0);
if (size>0)
{
int samps;
int bytes;
readpoint+=size;
if (readpoint >= 1)
{
codec = *inputbuffer;
if (codec >= 0 && codec <= 127 && readpoint>=5) //just in case.
{
samps = LittleLong(*(signed short *)(inputbuffer+1));
bytes = LittleLong(*(unsigned short *)(inputbuffer+3));
// Con_DPrintf("read %i\n", size);
if (samps < 0) //something special
{
readpoint=0;
}
else
{
if (readpoint >= bytes+5)
{
if (codec == 1)
Con_Printf("Reading\n");
if (codec < audionumcodecs && audiocodecs[codec].decode)
{
SNDVC_Submit(codec, ((qbyte *)inputbuffer)+5, samps, 11025, 2);
readpoint -= bytes+5;
memmove(inputbuffer, &inputbuffer[readpoint+bytes+5], readpoint);
}
else
{
Con_Printf("Bad codec %i\n", (int)codec);
readpoint=0;
closesocket(CLVS_socket);
CLVS_socket = 0;
}
}
}
}
}
}
else if (readpoint >= sizeof(inputbuffer) || readpoint < 0)
{
Con_Printf("Too small buffer or extended client %i\n", (int)readpoint);
readpoint=0;
closesocket(CLVS_socket);
CLVS_socket = 0;
}
else
{
break;
}
}
}
void SNDVC_MicInput(qbyte *buffer, int samples, int freq, int width) //this correctly buffers data ready to be sent.
{
int sent;
qbyte codec;
unsigned short *sampleswritten;
samples/=width;
if (!CLVS_socket)
{
if (cls.state)
{
char *server;
server = Info_ValueForKey(cl.serverinfo, "voiceaddress");
if (*server)
CLVC_SetServer(server);
}
SNDVC_Submit(0, buffer, samples, freq, width);
return;
}
else if (!cls.state)
{
readpoint = 0;
sendpoint= 0;
SNDVC_Submit(0, buffer, samples, freq, width);
return;
}
SNDVC_Submit(0, buffer, samples, freq, width); //remembering at all times that we will not be allowed to hear it ourselves.
//add to send buffer.
if (samples > 0x7ffe)
samples = 0x7ffe;
if (sendpoint + samples*width+sizeof(unsigned char)+sizeof(short)+sizeof(*sampleswritten) < sizeof(outputbuffer))
{
// Con_DPrintf("sending %i\n", (int)samples);
codec = 1;
outputbuffer[sendpoint] = codec; sendpoint += sizeof(unsigned char);
*(unsigned short*)(&outputbuffer[sendpoint]) = samples; sendpoint += sizeof(unsigned short);
sampleswritten = (short *)&outputbuffer[sendpoint]; sendpoint += sizeof(*sampleswritten);
*sampleswritten = audiocodecs[codec].encode((short *)buffer, &outputbuffer[sendpoint], samples);
sendpoint += *sampleswritten;
}
else
{
Con_Printf("Connection overflowing\n");
}
//try and send it
sent = send(CLVS_socket, outputbuffer, sendpoint, 0);
if (sent > 0)
{
// Con_DPrintf("sent %i\n", (int)sent);
sendpoint -= sent;
}
else
{
CLVS_socket=0;
}
// SNDVC_Submit(buffer, samples, freq, width);
}
#endif
#endif

View File

@ -0,0 +1,189 @@
#include "bothdefs.h"
#ifdef VOICECHAT
#include "quakedef.h"
#include "voicechat.h"
#include "g72x.h"
int VC_g72x_encoder (short *in, unsigned char *out, int samples, int (*g72x_encoder)(int,int,struct g72x_state *state), int bits)
{
struct g72x_state state;
unsigned int out_buffer = 0;
int out_bits = 0;
unsigned char out_byte;
int code;
int written=0;
g72x_init_state(&state);
while (samples)
{
code = g72x_encoder(*in, AUDIO_ENCODING_LINEAR, &state);
out_buffer |= (code << out_bits);
out_bits += bits;
if (out_bits >= 8)
{
out_byte = out_buffer & 0xff;
out_bits -= 8;
out_buffer >>= 8;
*out = out_byte;
out++;
written++;
}
in++;
samples--;
}
code=0;
while (out_bits > 0)
{
out_buffer |= (code << out_bits);
out_bits += bits;
if (out_bits >= 8)
{
out_byte = out_buffer & 0xff;
out_bits -= 8;
out_buffer >>= 8;
*out = out_byte;
out++;
written++;
}
}
return written;
}
int VC_g723_24_encoder (short *in, unsigned char *out, int samples)
{
return VC_g72x_encoder(in, out, samples, g723_24_encoder, 3);
}
int VC_g721_encoder (short *in, unsigned char *out, int samples)
{
return VC_g72x_encoder(in, out, samples, g721_encoder, 4);
}
int VC_g723_40_encoder (short *in, unsigned char *out, int samples)
{
return VC_g72x_encoder(in, out, samples, g723_40_encoder, 5);
}
int VC_g72x_decoder (unsigned char *in, short *out, int samples, int (*g72x_decoder)(int,int,struct g72x_state *state), int bits)
{
struct g72x_state state;
unsigned int in_buffer = 0;
int in_bits = 0;
unsigned char in_byte;
int code;
int read=0;
g72x_init_state(&state);
while (samples)
{
if (in_bits < bits)
{
in_byte = *in++;
read++;
in_buffer |= (in_byte << in_bits);
in_bits += 8;
}
code = in_buffer & ((1 << bits) - 1);
in_buffer >>= bits;
in_bits -= bits;
*out = g72x_decoder(code, AUDIO_ENCODING_LINEAR, &state);
out++;
samples--;
}
return read;
}
int VC_g723_24_decoder (unsigned char *in, short *out, int samples)
{
return VC_g72x_decoder(in, out, samples, g723_24_decoder, 3);
}
int VC_g721_decoder (unsigned char *in, short *out, int samples)
{
return VC_g72x_decoder(in, out, samples, g721_decoder, 4);
}
int VC_g723_40_decoder (unsigned char *in, short *out, int samples)
{
return VC_g72x_decoder(in, out, samples, g723_40_decoder, 5);
}
int VS_Raw_enc (short *in, unsigned char *out, int samples)
{
memcpy(out, in, samples*2);
return samples*2;
}
int VS_Raw_dec (unsigned char *in, short *out, int samples)
{
memcpy(out, in, samples*2);
return samples*2;
}
audiocodec_t audiocodecs[] = {
{"Raw 11025sps 16bit", VS_Raw_enc, VS_Raw_dec},
#ifdef _G72X_H
{"G.723.24", VC_g723_24_encoder, VC_g723_24_decoder},
{"G.721 32", VC_g721_encoder, VC_g721_decoder},
{"G.723.40", VC_g723_40_encoder, VC_g723_40_decoder},
#else
{"Non-implemented codec (G.723.24)"},
{"Non-implemented codec (G.721 32)"},
{"Non-implemented codec (G.723.40)"},
#endif
{0}
};
const int audionumcodecs = sizeof(audiocodecs)/sizeof(audiocodec_t);
#endif

View File

@ -0,0 +1,9 @@
//raw data is 16 bps
typedef struct {
char *name;
int (*encode) (short *in, unsigned char *out, int numsamps); //returns number of bytes.
int (*decode) (unsigned char *in, short *out, int numsamps); //returns number of 16bps samples.
} audiocodec_t;
extern audiocodec_t audiocodecs[];
extern const int audionumcodecs;