fallout2-ce/src/cache.cc

596 lines
15 KiB
C++
Raw Normal View History

2022-05-19 01:51:26 -07:00
#include "cache.h"
#include "debug.h"
#include "memory.h"
#include "sound.h"
#include <limits.h>
#include <stdio.h>
#include <string.h>
// 0x510938
int _lock_sound_ticker = 0;
// cache_init
// 0x41FCC0
bool cacheInit(Cache* cache, CacheSizeProc* sizeProc, CacheReadProc* readProc, CacheFreeProc* freeProc, int maxSize)
{
if (!heapInit(&(cache->heap), maxSize)) {
return false;
}
cache->size = 0;
cache->maxSize = maxSize;
cache->entriesLength = 0;
cache->entriesCapacity = CACHE_ENTRIES_INITIAL_CAPACITY;
cache->hits = 0;
2022-05-21 08:22:03 -07:00
cache->entries = (CacheEntry**)internal_malloc(sizeof(*cache->entries) * cache->entriesCapacity);
2022-05-19 01:51:26 -07:00
cache->sizeProc = sizeProc;
cache->readProc = readProc;
cache->freeProc = freeProc;
if (cache->entries == NULL) {
return false;
}
memset(cache->entries, 0, sizeof(*cache->entries) * cache->entriesCapacity);
return true;
}
// cache_exit
// 0x41FD50
bool cacheFree(Cache* cache)
{
if (cache == NULL) {
return false;
}
cacheClean(cache);
cacheFlush(cache);
heapFree(&(cache->heap));
cache->size = 0;
cache->maxSize = 0;
cache->entriesLength = 0;
cache->entriesCapacity = 0;
cache->hits = 0;
if (cache->entries != NULL) {
internal_free(cache->entries);
cache->entries = NULL;
}
cache->sizeProc = NULL;
cache->readProc = NULL;
cache->freeProc = NULL;
return true;
}
// 0x41FDE8
bool cacheLock(Cache* cache, int key, void** data, CacheEntry** cacheEntryPtr)
{
if (cache == NULL || data == NULL || cacheEntryPtr == NULL) {
return false;
}
*cacheEntryPtr = NULL;
int index;
int rc = cacheFindIndexForKey(cache, key, &index);
if (rc == 2) {
// Use existing cache entry.
CacheEntry* cacheEntry = cache->entries[index];
cacheEntry->hits++;
} else if (rc == 3) {
// New cache entry is required.
if (cache->entriesLength >= INT_MAX) {
return false;
}
if (!cacheFetchEntryForKey(cache, key, &index)) {
return false;
}
_lock_sound_ticker %= 4;
if (_lock_sound_ticker == 0) {
soundContinueAll();
}
} else {
return false;
}
CacheEntry* cacheEntry = cache->entries[index];
if (cacheEntry->referenceCount == 0) {
if (!heapLock(&(cache->heap), cacheEntry->heapHandleIndex, &(cacheEntry->data))) {
return false;
}
}
cacheEntry->referenceCount++;
cache->hits++;
cacheEntry->mru = cache->hits;
if (cache->hits == UINT_MAX) {
cacheResetStatistics(cache);
}
*data = cacheEntry->data;
*cacheEntryPtr = cacheEntry;
return true;
}
// 0x4200B8
bool cacheUnlock(Cache* cache, CacheEntry* cacheEntry)
{
if (cache == NULL || cacheEntry == NULL) {
return false;
}
if (cacheEntry->referenceCount == 0) {
return false;
}
cacheEntry->referenceCount--;
if (cacheEntry->referenceCount == 0) {
heapUnlock(&(cache->heap), cacheEntry->heapHandleIndex);
}
return true;
}
// cache_flush
// 0x42012C
bool cacheFlush(Cache* cache)
{
if (cache == NULL) {
return false;
}
// Loop thru cache entries and mark those with no references for eviction.
for (int index = 0; index < cache->entriesLength; index++) {
CacheEntry* cacheEntry = cache->entries[index];
if (cacheEntry->referenceCount == 0) {
cacheEntry->flags |= CACHE_ENTRY_MARKED_FOR_EVICTION;
}
}
// Sweep cache entries marked earlier.
cacheSweep(cache);
// Shrink cache entries array if it's too big.
int optimalCapacity = cache->entriesLength + CACHE_ENTRIES_GROW_CAPACITY;
if (optimalCapacity < cache->entriesCapacity) {
cacheSetCapacity(cache, optimalCapacity);
}
return true;
}
// 0x42019C
bool cachePrintStats(Cache* cache, char* dest)
{
if (cache == NULL || dest == NULL) {
return false;
}
sprintf(dest, "Cache stats are disabled.%s", "\n");
return true;
}
// Fetches entry for the specified key into the cache.
//
// 0x4203AC
bool cacheFetchEntryForKey(Cache* cache, int key, int* indexPtr)
{
2022-05-21 08:22:03 -07:00
CacheEntry* cacheEntry = (CacheEntry*)internal_malloc(sizeof(*cacheEntry));
2022-05-19 01:51:26 -07:00
if (cacheEntry == NULL) {
return false;
}
if (!cacheEntryInit(cacheEntry)) {
return false;
}
do {
int size;
if (cache->sizeProc(key, &size) != 0) {
break;
}
if (!cacheEnsureSize(cache, size)) {
break;
}
bool allocated = false;
int cacheEntrySize = size;
for (int attempt = 0; attempt < 10; attempt++) {
if (heapBlockAllocate(&(cache->heap), &(cacheEntry->heapHandleIndex), size, 1)) {
allocated = true;
break;
}
cacheEntrySize = (int)((double)cacheEntrySize + (double)size * 0.25);
if (cacheEntrySize > cache->maxSize) {
break;
}
if (!cacheEnsureSize(cache, cacheEntrySize)) {
break;
}
}
if (!allocated) {
cacheFlush(cache);
allocated = true;
if (!heapBlockAllocate(&(cache->heap), &(cacheEntry->heapHandleIndex), size, 1)) {
if (!heapBlockAllocate(&(cache->heap), &(cacheEntry->heapHandleIndex), size, 0)) {
allocated = false;
}
}
}
if (!allocated) {
break;
}
do {
if (!heapLock(&(cache->heap), cacheEntry->heapHandleIndex, &(cacheEntry->data))) {
break;
}
if (cache->readProc(key, &size, cacheEntry->data) != 0) {
break;
}
heapUnlock(&(cache->heap), cacheEntry->heapHandleIndex);
cacheEntry->size = size;
cacheEntry->key = key;
bool isNewKey = true;
if (*indexPtr < cache->entriesLength) {
if (key < cache->entries[*indexPtr]->key) {
if (*indexPtr == 0 || key > cache->entries[*indexPtr - 1]->key) {
isNewKey = false;
}
}
}
if (isNewKey) {
if (cacheFindIndexForKey(cache, key, indexPtr) != 3) {
break;
}
}
if (!cacheInsertEntryAtIndex(cache, cacheEntry, *indexPtr)) {
break;
}
return true;
} while (0);
heapUnlock(&(cache->heap), cacheEntry->heapHandleIndex);
} while (0);
// NOTE: Uninline.
cacheEntryFree(cache, cacheEntry);
return false;
}
// 0x4205E8
bool cacheInsertEntryAtIndex(Cache* cache, CacheEntry* cacheEntry, int index)
{
// Ensure cache have enough space for new entry.
if (cache->entriesLength == cache->entriesCapacity - 1) {
if (!cacheSetCapacity(cache, cache->entriesCapacity + CACHE_ENTRIES_GROW_CAPACITY)) {
return false;
}
}
// Move entries below insertion point.
memmove(&(cache->entries[index + 1]), &(cache->entries[index]), sizeof(*cache->entries) * (cache->entriesLength - index));
cache->entries[index] = cacheEntry;
cache->entriesLength++;
cache->size += cacheEntry->size;
return true;
}
// Finds index for given key.
//
// Returns 2 if entry already exists in cache, or 3 if entry does not exist. In
// this case indexPtr represents insertion point.
//
// 0x420654
int cacheFindIndexForKey(Cache* cache, int key, int* indexPtr)
{
int length = cache->entriesLength;
if (length == 0) {
*indexPtr = 0;
return 3;
}
int r = length - 1;
int l = 0;
int mid;
int cmp;
do {
mid = (l + r) / 2;
cmp = key - cache->entries[mid]->key;
if (cmp == 0) {
*indexPtr = mid;
return 2;
}
if (cmp > 0) {
l = l + 1;
} else {
r = r - 1;
}
} while (r >= l);
if (cmp < 0) {
*indexPtr = mid;
} else {
*indexPtr = mid + 1;
}
return 3;
}
// 0x420708
bool cacheEntryInit(CacheEntry* cacheEntry)
{
cacheEntry->key = 0;
cacheEntry->size = 0;
cacheEntry->data = NULL;
cacheEntry->referenceCount = 0;
cacheEntry->hits = 0;
cacheEntry->flags = 0;
cacheEntry->mru = 0;
return true;
}
// NOTE: Inlined.
//
// 0x420740
bool cacheEntryFree(Cache* cache, CacheEntry* cacheEntry)
{
if (cacheEntry->data != NULL) {
heapBlockDeallocate(&(cache->heap), &(cacheEntry->heapHandleIndex));
}
internal_free(cacheEntry);
return true;
}
// 0x420764
bool cacheClean(Cache* cache)
{
Heap* heap = &(cache->heap);
for (int index = 0; index < cache->entriesLength; index++) {
CacheEntry* cacheEntry = cache->entries[index];
// NOTE: Original code is slightly different. For unknown reason it uses
// inner loop to decrement `referenceCount` one by one. Probably using
// some inlined function.
if (cacheEntry->referenceCount != 0) {
heapUnlock(heap, cacheEntry->heapHandleIndex);
cacheEntry->referenceCount = 0;
}
}
return true;
}
// 0x4207D4
bool cacheResetStatistics(Cache* cache)
{
if (cache == NULL) {
return false;
}
2022-05-21 08:22:03 -07:00
CacheEntry** entries = (CacheEntry**)internal_malloc(sizeof(*entries) * cache->entriesLength);
2022-05-19 01:51:26 -07:00
if (entries == NULL) {
return false;
}
memcpy(entries, cache->entries, sizeof(*entries) * cache->entriesLength);
qsort(entries, cache->entriesLength, sizeof(*entries), cacheEntriesCompareByMostRecentHit);
for (int index = 0; index < cache->entriesLength; index++) {
CacheEntry* cacheEntry = entries[index];
cacheEntry->mru = index;
}
cache->hits = cache->entriesLength;
// FIXME: Obviously leak `entries`.
return true;
}
// Prepare cache for storing new entry with the specified size.
//
// 0x42084C
bool cacheEnsureSize(Cache* cache, int size)
{
if (size > cache->maxSize) {
// The entry of given size is too big for caching, no matter what.
return false;
}
if (cache->maxSize - cache->size >= size) {
// There is space available for entry of given size, there is no need to
// evict anything.
return true;
}
2022-05-21 08:22:03 -07:00
CacheEntry** entries = (CacheEntry**)internal_malloc(sizeof(*entries) * cache->entriesLength);
2022-05-19 01:51:26 -07:00
if (entries != NULL) {
memcpy(entries, cache->entries, sizeof(*entries) * cache->entriesLength);
qsort(entries, cache->entriesLength, sizeof(*entries), cacheEntriesCompareByUsage);
// The sweeping threshold is 20% of cache size plus size for the new
// entry. Once the threshold is reached the marking process stops.
int threshold = size + (int)((double)cache->size * 0.2);
int accum = 0;
int index;
for (index = 0; index < cache->entriesLength; index++) {
CacheEntry* entry = entries[index];
if (entry->referenceCount == 0) {
if (entry->size >= threshold) {
entry->flags |= CACHE_ENTRY_MARKED_FOR_EVICTION;
// We've just found one huge entry, there is no point to
// mark individual smaller entries in the code path below,
// reset the accumulator to skip it entirely.
accum = 0;
break;
} else {
accum += entry->size;
if (accum >= threshold) {
break;
}
}
}
}
if (accum != 0) {
// The loop below assumes index to be positioned on the entry, where
// accumulator stopped. If we've reached the end, reposition
// it to the last entry.
if (index == cache->entriesLength) {
index -= 1;
}
// Loop backwards from the point we've stopped and mark all
// unreferenced entries for sweeping.
for (; index >= 0; index--) {
CacheEntry* entry = entries[index];
if (entry->referenceCount == 0) {
entry->flags |= CACHE_ENTRY_MARKED_FOR_EVICTION;
}
}
}
internal_free(entries);
}
cacheSweep(cache);
if (cache->maxSize - cache->size >= size) {
return true;
}
return false;
}
// 0x42099C
bool cacheSweep(Cache* cache)
{
for (int index = 0; index < cache->entriesLength; index++) {
CacheEntry* cacheEntry = cache->entries[index];
if ((cacheEntry->flags & CACHE_ENTRY_MARKED_FOR_EVICTION) != 0) {
if (cacheEntry->referenceCount != 0) {
// Entry was marked for eviction but still has references,
// unmark it.
cacheEntry->flags &= ~CACHE_ENTRY_MARKED_FOR_EVICTION;
} else {
int cacheEntrySize = cacheEntry->size;
// NOTE: Uninline.
cacheEntryFree(cache, cacheEntry);
// Move entries up.
memmove(&(cache->entries[index]), &(cache->entries[index + 1]), sizeof(*cache->entries) * ((cache->entriesLength - index) - 1));
cache->entriesLength--;
cache->size -= cacheEntrySize;
// The entry was removed, compensate index.
index--;
}
}
}
return true;
}
// 0x420A40
bool cacheSetCapacity(Cache* cache, int newCapacity)
{
if (newCapacity < cache->entriesLength) {
return false;
}
2022-05-21 08:22:03 -07:00
CacheEntry** entries = (CacheEntry**)internal_realloc(cache->entries, sizeof(*cache->entries) * newCapacity);
2022-05-19 01:51:26 -07:00
if (entries == NULL) {
return false;
}
cache->entries = entries;
cache->entriesCapacity = newCapacity;
return true;
}
// 0x420A74
int cacheEntriesCompareByUsage(const void* a1, const void* a2)
{
CacheEntry* v1 = *(CacheEntry**)a1;
CacheEntry* v2 = *(CacheEntry**)a2;
if (v1->referenceCount != 0 && v2->referenceCount == 0) {
return 1;
}
if (v2->referenceCount != 0 && v1->referenceCount == 0) {
return -1;
}
if (v1->hits < v2->hits) {
return -1;
} else if (v1->hits > v2->hits) {
return 1;
}
if (v1->mru < v2->mru) {
return -1;
} else if (v1->mru > v2->mru) {
return 1;
}
return 0;
}
// 0x420AE8
int cacheEntriesCompareByMostRecentHit(const void* a1, const void* a2)
{
CacheEntry* v1 = *(CacheEntry**)a1;
CacheEntry* v2 = *(CacheEntry**)a2;
if (v1->mru < v2->mru) {
return 1;
} else if (v1->mru > v2->mru) {
return -1;
} else {
return 0;
}
}